Доска вдоль волокон или поперек

Обновлено: 18.05.2024

Древесина – это достаточно популярный материал, который находит свое применение в разнообразных сферах человеческой жизни. При этом далеко не каждый человек знает о том, что сырье обладает целым рядом уникальных характеристик. Сегодня в нашей статье мы подробно рассмотрим механические свойства древесины.

Особенности

Механические свойства древесины характеризуют общее качество материала и находятся с ним в прямо пропорциональном соотношении. К важнейшим показателям механической прочности относится способность дерева выдерживать нагрузки как статического, так и динамического типа.

Для того чтобы определить механические свойства, которыми обладает материал, его растягивают, сжимают, изгибают и сдвигают. При этом стоит иметь в виду тот факт, что древесину называют анизотропным материалом, соответственно, сырье может обладать различными свойствами в зависимости от того, в каком направлении на него оказывается воздействие. Всего существует 2 направления: радиальное и тангенциальное.




Что такое прочность и от чего зависит?

Важнейшая механическая черта древесины – это ее прочность. Прочностные характеристики оказывают прямое влияние на то, каким образом и на каком уровне материал может сопротивляться и противостоять нежелательным разрушениям.



Стоит отметить тот факт, что существует прямая зависимость между прочностью и направлением воздействия на древесину. Так, прочность сырья в 20 раз увеличивается при оказании воздействия вдоль волокон, чем если давление будет оказываться поперек.



Средний (так называемый «промежуточный») класс занимают хвойные породы деревьев. Более высокие показатели характерны, например, для березы – именно поэтому из нее очень часто изготавливают различные опорные и несущие конструкции, а также элементы, для которых важна повышенная износостойкость.

Это интересно. Показатели допустимой прочности и ее пределы (как минимальные, так и максимальные) невозможно определить самостоятельно в домашних условиях. Подобные процедуры производятся исключительно в лабораторных условиях. При этом опыты и эксперименты осуществляются исключительно на основании действующих государственных нормативных актов.

Следует отметить тот факт, что на уровень прочности и упругости влияет уровень влажности. Так, при увлажнении происходят специфические реакции внутри древесины, которые уменьшают ее прочность. При этом данное положение является актуальным только в том случае, если уровень влаги поднимается до 25%. Дальнейшее увлажнение не отличается какими-либо существенными реакциями и не влияет на показатели прочности. Это понимают специалисты.



Для того чтобы сравнить показатели прочности разных пород, необходимо убедиться в том, что показатели их влажности являются идентичными – только в таком случае можно говорить об объективном и беспристрастном результате.

Помимо влажности при измерении прочности также важно обращать внимание на характер и продолжительность нагрузок. Так, например, статические нагрузки отличаются постоянством. Кроме того, для них характерно медленное и постепенное возрастание. С другой стороны, динамические нагрузки являются относительно короткими. Так или иначе, разрушать древесину могут и те, и другие нагрузки.



Стоит также иметь в виду, что показатели прочности, ее пределы и лимиты различаются в зависимости от конкретного вида деформации.

  • Растяжение. Если говорить о прочности древесины на растяжение, то данный показатель составляет 1 300 кгс/см2 (причем данный параметр является актуальным для всех сортов). В такой ситуации решающее значение имеет внутренняя структура древесины. Если волокна расположены правильно и структурировано, то прочность увеличивается (и наоборот). Прочность различается в зависимости от того, в каком направлении растягивают древесину – вдоль или поперек. В первом случае показатель довольно велик, а во втором – он в 20 раз меньше и составляет 65 кгс/см2. Именно в связи с такими механическими чертами дерево редко используется при создании изделий, которые работают на поперечное растяжение.
  • Сжатие. Как и любое другие воздействие на древесину, оно может осуществляться как в продольном, так и в поперечном направлении. Если говорить о сжатии вдоль волокон, то стоит отметить, что в данном случае порода будет укорачиваться (именно так и будет проявляться вовне процесс деформации). При этом также стоит учитывать, что прочность древесины, которую сжимают не вдоль, а поперек значительно уменьшается, конкретно – в 8 раз. В лабораторных условиях дерево сжимают в радиальном и тангенциальном направлениях. В ходе проведения подобных экспериментов учеными доподлинно было установлено, что прочность у различных пород при сжатии является неодинаковой. Так, более высокими показателями при радиальном сжатии отличаются породы с сердцевинными лучами. С другой стороны, хвойные деревья проявляют достаточно высокие показатели прочности даже при тангенциальном сжатии.
  • Статический изгиб. Отличительная черта такого типа воздействия, как статический изгиб, состоит в том, что различные слои древесины получают различное воздействие, а именно – верхние слои древесины получают напряжение сжатия, а нижние — растяжения вдоль волокон. Между верхними и нижними слоями находится особый слой, который не испытывает какого-либо давления. Традиционно этот слой называют нейтральным. Изначально разрушение материала начинается в нижней растянутой зоне, в связи с чем разрываются крайние волокна древесины. Существует средний показатель прочности, который характерен для большого количества древесных пород, он составляет 1 000 кгс/см2 (при этом могут существовать отклонения от данного показателя в зависимости от уникальных показателей каждой конкретной породы, а также от уровня влажности).
  • Сдвиг. По существу, сдвиг – это деформация, которая представляет собой смещение одной части по отношению к другой. Существует несколько разных типов сдвига: скалывание (оно может происходить в любом направлении), а также перерезание. В этом случае особенно важно следить за тем, насколько прочным остается дерево. Так, скалывание вдоль негативно влияет на прочностные показатели, более прочной остается порода при поперечном скалывании.

Как мы смогли убедиться, прочность – это важнейшая механическая характеристика дерева. При этом на ее уровень могут влиять самые разные воздействия. Все эти факторы следует учитывать в процессе эксплуатации материала, чтобы не нарушить его целостность.

Другие основные механические свойства

Помимо прочности древесина характеризуется и другими механическими и физико-механическими свойствами. Рассмотрим подробнее основные из них.

Твердость

В первую очередь необходимо сказать о такой характеристике природного материала, как твердость. Твердость относится к важнейшим чертам материала и представляет собой способность сырья оказывать сопротивление по отношению к внедрению твердого тела определенной формы. Различают торцевую и боковую твердость (в зависимости от стороны материала, на которую оказывается воздействие). Торцевая твердость является более высокой по своим показателям.



Важно. Следует отметить такой факт: несмотря на то, что некоторые породы дерева отличаются повышенным уровнем твердости, данный материал все же уступает по данным характеристикам такому сырью, как, например, металл.

В зависимости от показателей твердости такой строительный материал, как древесина, подразделяется на 3 основные группы:

  • мягкие (например, сосна, ель, кедр, пихта, липа, осина, ольха, каштан и т. д.);
  • твердые;
  • особо твердые.

Соответственно, при изготовлении тех или иных изделий очень важно учитывать такой параметр, как твердость. Например, из мягких сортов желательно изготавливать декоративные элементы, а для создания опорных конструкций подойдут только особенно твердые разновидности.

Твердость древесины имеет решающее значение в ходе применения и обработки материала. В зависимости от ваших конкретных потребностей и сферы применения древесины наиболее актуальным и подходящим может оказаться тот или иной вариант.




Ударная вязкость

Еще одна важная характеристика, которая различается у определенных пород дерева (например, у клена и ели), – это ударная вязкость. Данное свойство обозначает и определяет способность материала поглощать динамические нагрузки. При этом, чем выше показатель ударной вязкости, тем меньше разрушений и нарушений целостности вы будете наблюдать на дереве в процессе приложения этих самых динамических нагрузок. В целом можно сказать о том, что для большинства пород данный показатель находится на достаточно высоком уровне.



Износостойкость

На износостойкость следует обращать особое внимание, так как именно данный параметр определяет то, способна ли древесина оказывать противостояние по отношению к продолжительным нагрузкам трения. В зависимости от того, насколько высока износостойкость, будет значительно различаться возможный срок эксплуатации материала. На уровень износостойкости решающее влияние оказывает направление распила и уникальные характеристики каждой конкретной породы дерева. При этом следует иметь в виду тот факт, что высокие показатели износостойкости характерны для торцевых поверхностей. По показателям износостойкости различается сухая и влажная древесина – первая обладает более высоким уровнем.

Способность удерживать металлические крепления

Как было сказано выше, дерево – это один из самых популярных, распространенных и востребованных материалов, который используется для создания мебели, декоративных элементов и большого количества других изделий. Соответственно, при его обработке в него вбивается большое количество креплений, чаще всего – металлических. Поэтому такой показатель, как способность удерживать металлические крепления, имеет важнейшее значение. Так, например, гвозди могут разрезать или раздвигать волокна дерева, а шурупы могут цеплять волокна.

Способность изгибаться

Для того чтобы создать функциональные и эстетически привлекательные изделия, дерево необходимо сгибать. В связи с этим способность изгибаться – это еще одно важное механическое свойство древесины. Следует учитывать, что разные породы характеризуются различными уровнями возможности сгибания. Так, например, в отношении хвойных пород действует правило о том, что при сгибании хвою необходимо смочить, а вот сухое дерево практически не гнется (а при приложении высокого давления оно и вовсе может сломаться).

Деформативность

Деформативные характеристики также являются важнейшими. Они влияют на то, насколько быстро (и могут ли вообще) древесные породы восстанавливаются после оказания на них кратковременного динамического воздействия. В сочетании с деформативностью важную роль играет и такая характеристика, как модель упругости.

В связи с тем, что древесина используется в самых разных сферах человеческой жизни и является одним из самых востребованных материалов, очень важно подробно знать все ее свойства. Соответственно, перед использованием материала для создания тех или иных изделий (например, мебели, декоративных элементов и т. д.) следует тщательно изучить все химические, физические и механические свойства. Только в таком случае созданное вами изделие будет прочным и надежным. Помните, что разные типы древесины пригодны для разных целей. Кроме того, некоторые породы вообще нельзя подвергать воздействию, иначе они попросту разрушатся. Эти знания особенно актуальны для профессиональных краснодеревщиков и других представителей строительной сферы.

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам.
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость - это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам.
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость - это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

Линейная усушка древесины вдоль и поперек волокон различна: первую величину в среднем можно принять в 0,1%. Полная усушка поперек волокна значительно больше и по радиальному направлению в среднем для хвойных пород гыражается в 4%, для лиственных — 5%; тангентальная же усушка в два раза больше радиальной.

Объемная усушка

Объемная усушка в среднем достигает величины 12—14%. Величина усушки зависит от породы, а в пределах одной и той же породы — от объемного веса, повышаясь с увеличением последнего.

Подобная же зависимость имеет место и для разных пород (тяжелых и твердых пород в общем усыхает больше, чем у. легких и мягких пород), но здесь эта зависимость выражена менее резко. Кроме отмеченных факторов на величину усушки оказывает влияние режим сушки: чем быстрее высыхает, тем меньше ее усушка.

Однако в последнее время накапливаются данные, показывающие, что быстро высохшая древесина. впоследствии при хранении увеличивает свою усушку, которая постепенно доходит до размеров усушки, высохшей медленно.

Древесина западноевропейских пород (по Нердлингеру) разделяют по величине объемной усушки на следующие группы:

  1. сильно усыхающие породы — граб, бук, дуб, каштан, вяз, клен, береза, липа, ольха;
  2. умеренно усыхающие — тисс, сосна, ильм, груша, самшит, осина, осокорь, ива;
  3. мало усыхающие — ель, веймутова сосна.

Явление усушки находит себе объяснение с точки зрения мицеллярной теории. При высыхании в первую очередь испаряется свободная влага из полостей внутри, что не влечет за собой уменьшения размеров. При удалении же влаги из клеточных оболочек, где она заполняет пространства между фибриллами, последние сближаются, вследствие чего уменьшаются размеры отдельных элементов. Так как фибриллы ориентированы вдоль волокон под некоторым углом к их оси и т. к. вода заключена в продольных прослойках, раздвигая фибриллы, то поперечная усушка отдельного волокна будет в несколько десятков раз больше продольной.

Поперечная усушка

Поперечная усушка отдельного волокна достигает 30%, в то время как продольная едва составляет 1%. Неодинаковая усушка вдоль волокон в разных случаях объясняется различным углом наклона фибрилл. Различие между радиальной и тангентальной усушкой объясняется влиянием сердцевинных лучей и поздней зоны годового слоя. Усушка сердцевинных лучей по ширине (в тангентальном направлении) в 4—7 раз больше усушки прочих элементов древесины (по Перелыгину); равным образом тангентальная усушка поздней на 1—2% превышает усушку ранней древесины годового слоя.

определение усушки древесины

Оба эти фактора вызывают увеличение тангентальной усушки. Практическое значение усушки весьма велико; уменьшение размеров при высыхании заставляет при распиловке влажной - давать припуск на усушку; в готовых изделиях приходится принимать меры, затрудняющие изменения во влажности и тем самым — изменения в размерах деталей.

Усушкой объясняется и повышение ее крепости при высыхании ниже точки насыщения волокон. Неравномерность усушки по радиальному и тангентальному направлению вызывает коробление, т. е. изменение формы сортимента. Так, при распиловке в развал только середовая доска сохраняет плоскую форму.

Все остальные доски подвергаются поперечному короблению. Равном образом брус квадратного сечения с расположением годовых слоев на торце параллельно двум противоположным граням после высыхания меняет сечение на прямоугольное (или трапецоидальное), круг превращается в овал, а при расположении годовых слоев по диагонали квадрат превращается в ромб.

Неправильное расположение волокон (косослой) вызывает продольное коробление доски, приобретающей форму пропеллера (крыловатость).

Другой вид продольного коробления (выгиб) имеет место в результате различной усушки вдоль волокон отдельных зон ствола (креневая ).

Влажность высушенной древесины должна находиться в соответствии с влажностью окружающего воздуха во время службы того или иного изделия.

Пересушенная будет поглощать влагу из воздуха, и эта способность называется влагопоглощением (гигроскопичностью). Предельное количество влаги, могущее быть поглощенным из воздуха при данных условиях, определяет собой ее влагоемкость, а скорость поглощения при равных условиях зависит от влагопроводности.

усушка древесины обусловлена ее строением

Влагоемкость данной породы зависит от температуры и влажности окружающего воздуха. Следовательно при различных условиях древесина способна поглощать из воздуха различное количество влаги, достигая в конце-концов т. н. «равновесной влажности», когда она не поглощает и не испаряет влаги. Указанная зависимость иллюстрируется диаграммами влагопоглощения, построенными Чулицким для сосны, ясеня и дуба.

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам.
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость - это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

Читайте также: