Дом и крыша дома круги эйлера

Обновлено: 27.04.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В наше время вокруг нас собрано огромное количества информации, разобраться в ней бывает непросто. Поэтому многие не знают, что за названием «Круги Эйлера» скрывается практичный и удобный метод решения различных задач. Все слышали о них, но немногие могут объяснить, что это такое. Однако я считаю, что Круги Эйлера полезны как в повседневной жизни, так и в науке, поэтому ими стоит уметь пользоваться каждому. В этой работе я собрала всю необходимую информацию для понимания, что такое Круги Эйлера и где их удобно применять.

Круги Эйлера — это геометрическая схема, с помощью которой можно наглядно изобразить отношения между различными множествами и подмножествами. Такая схема помогает находить логические связи между явлениями и понятиями, она изобретена Леонардом Эйлером, используется в математике и других научных дисциплинах. Использование Кругов Эйлера упрощает рассуждения и помогает быстрее и проще получить ответ. (1),(2)

Круги Эйлера неотрывно связаны с понятием множества. Поэтому, чтобы лучше понимать, что изображено на кругах Эйлера, нужно знать, что такое множество и какие множества бывают.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества. Во множества можно объединять любые объекты с общим признаком. Например, множество учеников гимназии 11, учащихся в 7 «Б» классе составляют отдельное множество. Множества могут быть и неодушевленных предметов. Например, множество книг, написанных каким-либо автором. С помощью кругов Эйлера множество обозначается, как пустой круг, а входящие в него элементы – точками. (5)

Давайте изобразим множество цифр. На рисунке контуром обозначено множество, а точками элементы этого множества.

Множества бывают трех видов:

· Конечное (например - множество цифр)

· Бесконечное (например - множество чисел)

· Пустое (множество натуральных чисел

Группа предметов, образующая множество, входящее в состав более обширного множества, изображается в виде меньшего круга, нарисованного внутри большего круга, и называется подмножеством. Такое отношение образуется между большим множеством животных и входящим в его состав подмножеством плоских червей. (5)

В тех случаях, когда два понятия совпадают только частично, отношение между такими множествами изображается с помощью двух перекрещивающихся кругов. Такое отношение образуется между множеством учащихся 7 «Б» класса и множество троечников. Некоторые элементы множества учеников 7 «Б» класса принадлежат и к множеству троечников. (5)

Когда ни один предмет, из одного множества, не может одновременно принадлежать второму множеству, то отношение между ними изображается посредством двух кругов, нарисованных один вне другого. Такими множествами являются множество отрицательных и множество положительных чисел. (5)

Круги Эйлера были изобретены и названы в честь Леона́рда Э́йлера (портрет слева). Это был швейцарский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер родился в Швейцарии, учился в Германии, но работал и умер в России. Этот ученый – автор 800 работ. Леонард Эйлер родился в 1707 году в семье пастора. Его отец был другом семьи Бернулли. У Эйлера рано проявились математические способности. Обучаясь в гимназии, мальчик увлечённо занимался математикой, а позже стал посещать университетские лекции Иоганна Бернулли. 20 октября 1720 года Леонард Эйлер стал студентом факультета искусств Базельского университета. Одаренный молодой человек обратил на себя внимание профессора Иоганна Бернулли. Он передал студенту математические статьи для изучения, а также пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер встретился и начал общаться с сыновьями Бернулли — Даниилом (портрет слева) и Николаем (потрет справа), которые тоже занимались математикой. (6)

Юный Эйлер написал несколько научных работ. «Диссертация по физике о звуке» получила благоприятный отзыв. В то время число научных вакансий в Швейцарии было невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где начинала создаваться Российская Академия наук; они обещали похлопотать там и о должности для Эйлера. В начале зимы 1726 года Эйлеру пришло письмо из Санкт - Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. Эйлер провёл много времени в России, где внёс существенный вклад в российскую науку. С 1731 был избран академиком Петербургской Академии. Хорошо знал русский язык, а сочинения и учебники публиковал на русском. (6)

Тогда Эйлер подробно описывает свой метод решения некоторых задач при помощи кругов Эйлера. В 1741 году Эйлер пишет «Письма о разных физических и философических материях, к некоторой немецкой принцессе..», где упоминаются «круги Эйлера». Эйлер писал, что «круги очень подходят для того, чтобы облегчить наши размышления». (3)

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли по-своему. Бернард Больцано использовал тот же метод, но с прямоугольными схемами. Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна. Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только. (1)

Вот несколько задач для решения, которых, удобно использовать круги Эйлера:

Задача 1.

У ребят из одной школы спрашивали об их домашних животных. 100 из них ответили, что у них дома есть собака и/или кошка. У 87 ребят была одна собака, а у 63 ребят – одна кошка. У скольких ребят есть и собака и кошка?

Решение:

Чтобы решить эту задачу, не используя круги Эйлера нужно подсчитать, сколько собак и кошек было у учеников. Для этого нужно сложить 87 и 63. 87+63=150 домашних животных. Учеников было всего лишь 100, а дробного числа домашних животных получиться не может. Значит если у каждого ученика 1 домашнее животное, остается еще 50 лишних. Следовательно, у 50 учеников 2 домашних животных. И так как в задаче указано, что ни у одного из учеников нет 2 кошек или 2 собак, то это значит, что у 50 учеников есть и кошка и собака.

Но этот способ долгий и подходит только для простых задач. Такую задачу намного удобнее решить через круги Эйлера.

Красным кругом изобразим множество обладателей собак, а синим множество обладателей кошек. Всего учеников было 100. Тех, у кого есть и кошка, и собака Х. Чтобы найти количество учеников, у которых только собака нужно из 87 вычесть Х. Так как всего учеников 100, мы получаем:

Ответ: у 50 учеников есть и кошка и собака

Задача 2.

Однажды учеников спросили, кто из них любит математику, кому нравится русский язык, а кому физика. Оказалось, что из 36 учеников 2 не любят ни математику, ни русский, ни физику. Математика нравится 25 ученикам, русский язык- 11, физика – 17 ученикам; и математика, и русский- 6; и математика, и физика- 10; русский язык и физика - 4.

Сколько человек любят все три предмета?

Решение:

Изобразим 3 множества. Красное множество тех, кто любит математику, синие тех, кто любит русский язык, зеленое – физику.

Теперь впишем в множества количество элементов. 6 человек любят и русский и математику. Из них X человек любят еще и физику. Значит, только математику и русский любят 6-Х человек. Только математику и физику 10-Х, только русский и физику 4-Х человек. 25 человек любят математику. Но Х, 6-Х, 10-Х человек любят и другие предметы. Значит, только математику любят 25-(6-Х)-(10-Х)-Х= 25-6+Х-10+Х -Х=5+Х человек. Только русский любят 11-(6-Х)-(4-Х)-Х= 11-10+2Х-Х=1+Х учеников, только физику 17-(10-Х) –(4-Х)-Х= 17-14+2Х-Х= 3+Х.

Так как 2 человека не любят ни один из этих предметов, то:

Ответ: 1 человек любит все три предмета

Задача 3.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Очень часто решение задачи помогает найти рисунок. Использование рисунка делает решение простым и наглядным.

В данной разработке приведены примеры решения задач с помощью кругов Эйлера. Это не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Они помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

С данным способом решения задач учащихся можно познакомить как на уроках, так и на кружковых занятиях.

Главной целью этой работы является помощь учителям математики для подготовки учащихся к олимпиадам, а также к экзаменам.

Основные понятия

Понятие множества − одно из первичных в математике. Поэтому очень трудно дать ему какое-либо определение, которое бы не заменяло слово «множество» каким-нибудь равнозначным выражением, например, совокупность, собрание элементов и т.д. Элементы множества − это то, из чего это множество состоит, например, каждый ученик вашего класса есть элемент множества школьников.

Пересечение множеств в теории множеств - это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам.


Круги Эйлера - геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.

2. Решение задач с помощью кругов Эйлера

2.1. "Обитаемый остров" и "Стиляги"

Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек - фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Решение:

Чертим два множества таким образом:


6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств.

1. 15 - 6 = 9 - человек, которые смотрели только «Обитаемый остров»,

2. 11- 6 = 5 - человек, которые смотрели только «Стиляги».


Ответ: 5 человек.

2.2. Задача про библиотеки

Каждый из 35 шестиклассников является читателем, по крайней мере, одной из двух библиотек: школьной и районной. Из них 25 человек берут книги в школьной библиотеке, 20 - в районной.

  1. Являются читателями обеих библиотек;
  2. Не являются читателями районной библиотеки;
  3. Не являются читателями школьной библиотеки;
  4. Являются читателями только районной библиотеки;
  5. Являются читателями только школьной библиотеки?

Решение:

Чертим два множества таким образом:


1) 20+ 25 - 35 = 10 (человек) - являются читателями обеих библиотек. На схеме это общая часть кругов. Мы определили единственную неизвестную нам величину. Теперь, глядя на схему, легко даем ответы на поставленные вопросы.


2) 35 - 20 = 15 (человек) - не являются читателями районной библиотеки,


3) 35 - 25 = 10 (человек) - не являются читателями школьной библиотеки,


4) 35- 20 = 10 (человек) - являются читателями только районной библиотеки,

5) 35- 20 = 15 (человек) - являются читателями только школьной библиотеки.

Очевидно, что вопросы 2 и 5, а также 3 и 4 - равнозначны и ответы на них совпадают.

Ответ: 10 человек; 15 человек; 10 человек; 10 человек; 15 человек.

2.3. Гарри Поттер, Рон и Гермиона

На полке стояло 26 волшебных книг по заклинаниям, все они были прочитаны. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал только Рон?

Решение:

Учитывая условия задачи, сделаем чертеж:


Так как Гарри Поттер всего прочитал 11 книг, из них 4 книги читал Рон и 2 книги - Гермиона, то 11 - 4 - 2 = 5 - книг прочитал только Гарри.


Следовательно, 26 - 7 - 2 - 5 - 4 = 8 - книг прочитал только Рон.


Ответ: 8 книг.

2.4. Задача про любимые мультфильмы

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Решение:

Чертим три круга, таким образом:


Из условия знаем, что трем ученикам нравиться и «Белоснежка и семь гномов», и «Волк и теленок», шестерым - «Белоснежка и семь гномов» и «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма.


Мы помним, что по условиям задачи среди фанатов мультфильма «Волк и теленок» пятеро ребят выбрали два мультфильма сразу, т.е. 5 - 3 = 2 - ученика выбрали «Волк и теленок» и «Губка Боб Квадратные Штаны».


1) 21 - 3 - 1 - 6 = 11 - учеников выбрали только «Белоснежка и семь гномов»,

2) 13 - 3 - 1 - 2 = 7 - учеников выбрали - «Волк и теленок»,

3) 38 - (11 + 3 + 1 + 2 + 6 + 7) = 8 - ребят выбрали «Губка Боб Квадратные Штаны».


4) 8 + 2 + 1 + 6 = 17 - человек выбрали мультик «Губка Боб Квадратные Штаны».

Ответ: 17 учеников.

2.5. Задача про Крейсер и Линкор

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Найдено страниц, тыс.

Крейсер и Линкор

Какое количество страниц (в тысячах) будет найдено по запросу Крейсер и Линкор? (Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.)

Решение:

При помощи кругов Эйлера изобразим условия задачи.


1) 4800 + 4500 - 7000 = 2300 (тыс. страниц) - найдено по запросу Крейсер и Линкор,

2) 4800 - 2300 = 2500 (тыс. страниц) - найдено по запросу Крейсер,

3) 4500 - 2300 = 2200 (тыс. страниц) - найдено по запросу Линкор.


Ответ: 2300 тыс. страниц.

2.6. Задача про блондинок

Каждый ученик класса - либо девочка, либо блондин, либо любит математику. В классе 20 девочек, из них 12 блондинок, но одна блондинка любит математику. Всего в классе 24 ученика - блондина, математику из них любят 12, а всего учеников (мальчиков и девочек), которые любят математику, 17, из них 6 девочек. Сколько учеников в данном классе?

Решение:

Изобразим с помощью кругов Эйлера данные из задачи:


1) 12 - 1 = 11 (учеников) - девочек блондинок,

2) 12 - 1 = 11 (учеников) - блондины и любят математику,

3) 6 - 1 = 5 (учеников) - девочек, которые любят математику,


4) 20 - 11 - 1 - 5 = 3 (ученика) - девочки,

5) 24 - 11 - 1 - 11 = 1 (ученик) - блондин,

6) 17- 5 - 1 - 11 = 0 (учеников) - любят математику,


7) 3 + 1 + 0 + 5 + 11 + 11 + 1 = 32 (ученика) - всего в классе.

Ответ: 32 ученика.

2.7. Задача про кружки

В трёх седьмых классах 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке? Сколько ребят заняты только спортом?

Решение:

Учитывая условия задачи, сделаем чертеж:


1) 10 - 3 = 7 (ребят) - посещают драмкружок и хор,

2) 6 - 3 = 3 (ребят) - поют в хоре и занимаются спортом,

3) 8 - 3 = 5 (ребят) - занимаются спортом и посещают драмкружок,


4) 27 - 7 - 3 - 5 = 12 (ребят) - посещают драмкружок,

5) 32 - 7 3 - 3 = 19 (ребят) - поют в хоре,

6) 22 - 5 - 3 - 3 = 11 (ребят) - увлекаются спортом,


7) 70 - (12 + 19 + 11 + 5+ 7 + 3 + 3) = 10 (ребят) - не поют в хоре, не увлекаются спортом и не занимаются в драмкружке.

Ответ: 10 человек и 11 человек.

Задачи для самостоятельного решения

1. На фирме работают 67 человек. Из них 47 знают английский язык, 35 - немецкий язык, а 23 - оба языка. Сколько человек фирмы не знают ни английского, ни немецкого языков?

2. Из 40 учащихся нашего класса 32 любят молоко, 21 - лимонад, а 15 - и молоко, и лимонад. Сколько ребят в нашем классе не любят ни молоко, ни лимонад?

3. 12 моих одноклассников любят читать детективы, 18 - фантастику, трое с удовольствием читают и то, и другое, а один вообще ничего не читает. Сколько учеников в нашем классе?

4. Из тех 18 моих одноклассников, которые любят смотреть триллеры, только 12 не прочь посмотреть и мультфильмы. Сколько моих одноклассников смотрят одни «мультики», если всего в нашем классе 25 учеников, каждый из которых любит смотреть или триллеры, или мультфильмы, или и то и другое?

5. Из 29 мальчишек нашего двора только двое не занимаются спортом, а остальные посещают футбольную или теннисную секции, а то и обе. Футболом занимается 17 мальчишек, а теннисом - 19. Сколько футболистов играет в теннис? Сколько теннисистов играет в футбол?

6. В одном классе 25 учеников. Из них 7 любят груши, 11 - черешню. Двое любят груши и черешню; 6 - груши и яблоки; 5 - яблоки и черешню. Но есть в классе два ученика, которые любят все и четверо таких, что не любят фруктов вообще. Сколько учеников этого класса любят яблоки?

7. В конкурсе красоты участвовали 22 девушки. Из них 10 было красивых, 12 - умных и 9 - добрых. Только 2 девушки были и красивыми, и умными; 6 девушек были умными и одновременно добрыми. Определите, сколько было красивых и в то же время добрых девушек, если я скажу вам, что среди участниц не оказалось ни одной умной, доброй и вместе с тем красивой девушки?

8. В нашем классе 35 учеников. За первую четверть пятерки по русскому языку имели 14 учеников; по математике - 12; по истории - 23. По русскому и математике - 4; по математике и истории - 9; по русскому языку и истории - 5. Сколько учеников имеют пятерки по всем трем предметам, если в классе нет ни одного ученика, не имеющего пятерки хотя бы по одному из этих предметов?

9. Из 100 человек 85 знают английский язык, 80 - испанский, 75 - немецкий. Все владеют, по крайней мере, одним иностранным языком. Среди них нет таких, которые знают два иностранных языка, но есть владеющие тремя языками. Сколько человек из этих 100 знают три языка?

10. Из сотрудников фирмы 16 побывали во Франции, 10 - в Италии, 6 - в Англии; в Англии и Италии - 5; в Англии и Франции - 6; во всех трех странах - 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работают 19 человек, и каждый из них побывал хотя бы в одной из названных стран?

Список использованных источников

1. Баженов И.И, Порошкин А.Г., Тимофеев А.Ю., Яковлев В.Д. Задачи для школьных математических кружков: учеб. пособие / Сыктывкар: Сыктывкарский университет, 2006.

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Я проводила опрос среди учащихся 7-х классов. В опросе принимали участие 87 человек.

Результаты социологического опроса представлены на диаграмме. Приложение 5.

Из результатов диаграммы видно, что хотели научиться решать задачи с помощью кругов Эйлера около 80 % учащихся.

2.3 Сборник задач по комбинаторике

Жена попросила своего мужа купить лук, капусту и морковь. Какими различными способами муж мог совершить покупку?

Записанный номер телефона из пяти цифр (5, 3, 4, 7, 2) оказался неверным. Необходимо определить варианты номера телефона.

Сколько трехзначных чисел можно составить из цифр 2,4,6,8 используя в записи числа каждую из них не более одного раза?

Сколько всевозможных вариантов pin -кода надо перебрать, чтобы среди них наверняка был и забытый?

Из группы теннисистов, в которую входят четыре человека – Иванов, Петров, Сидоров и Федоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары?

Составьте все возможные трёхзначные числа из указанных цифр,

используя в записи числа каждую из них не более одного раза:

У Арины пять подруг: Катя, Юля, Лиза, Алёна и Таня. Она решила пригласить двух из них в кино. Укажите все возможные варианты выбора подруг. Сколько таких вариантов ?

Из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги. Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут?

В школьных кружках занимаются 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок и хор. Сколько ребят не поют, не увлекаются спортом, не занимаются в драмкружке? Сколько ребят заняты только спортом?

Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

В классе 30 учеников. Все они являются читателями школьной и районной библиотек. Из них 20 ребят берут книги в школьной библиотеке, 15 — в районной. Сколько учеников не являются читателями школьной библиотеки?

В классе 35 учеников. 24 из них играют в футбол, 18 — в волейбол, 12 — в баскетбол. 10 учеников одновременно играют в футбол и волейбол, 8 — в футбол и баскетбол, а 5 — в волейбол и баскетбол. Сколько учеников иг­ рают и в футбол, и в волейбол, и в баскетбол одновременно?

58 человек ежедневно добираются на работу общественным транспортом: на автобусе, на трамвае или на метро. Каждый пользуется хотя бы одним из видов транспорта. 42 человека из них используют метро, 32 – трамвай, 44 – автобус. 21 человек из них используют метро и трамвай, 31 – метро и автобус, 22 – трамвай и автобус. Сколько среди них человек, которые используют все три вида транспорта, чтобы добраться на работу?

В 6 А классе 15 человек. В кружок «Эрудит» ходят 5 человек, в кружок «Путь к слову» 13 человек, спортивную секцию посещают 3 человека. Причем 2 человека посещают кружок «Эрудит» и кружок «Путь к слову», «Эрудит» и спортивную секцию, спортивную секцию и «Путь к слову». Сколько человек посещают все три кружка?

В магазине побывало 65 человек. Известно, что они купили 35 холодильников, 36 микроволновок, 37 телевизоров. 20 из них купили и холодильник и микроволновку, 19 - и микроволновку, и телевизор, 15- холодильник и телевизор, а все три покупки совершили три человека. Был ли среди них посетитель, не купивший ничего?

В детском саду 52 ребенка. Каждый из них любит либо пирожное, либо мороженое, либо и то, и другое. Половина детей любит пирожное, а 20 человек — пирожное и мороженое. Сколько детей любит мороженое?

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 — лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 — отличниками и спортсменами, 8 — спортсменами и победителями олимпиад, 3 — и отличники, и спортсмены, и победители олимпиад. Сколько ребят отдыхали в лагере?

У всех моих подруг есть домашние питомцы. Шестеро из них любят и держат кошек, а пятеро - собак. И только у двоих есть и те и другте. Угадайте, сколько у меня подруг?

В кондитерском отделе супермаркета посетители обычно покупают либо один торт, либо одну коробку конфет, либо один торт и одну коробку конфет. В один из дней было продано 57 тортов и 36 коробок конфет. Сколько было покупателей, если 12 человек купили и торт, и коробку конфет?

Во дворе стоят машины. Некоторые из них — москвичи, а остальные — жигули. Некоторые из машин красные, а остальные белые. Некоторые из машин новые, а остальные — старые. Известно, что красных москвичей — 3, новых москвичей — 4, а новых красных машин — 5. При этом старых белых москвичей — 2, новых белых жигулей — 1, а старых красных москвичей вообще ни одного. Сколько во дворе новых красных москвичей, если всего машин 21, а старых белых жигулей — 6.

В результате выполнения проектной работы был создан задачник, который состоит из 23 задач и по теории вероятности, и по комбинаторике.

Как видно из моей исследовательской работы, задачи состоят из множества данных. Выстроив данные в единую цепочку, можно увидеть, что решение задач подчиняется одному и тому же способу. Для решения задач, решаемых с помощью кругов Эйлера, был составлен алгоритм, состоящий из следующих этапов:

• Записываем краткое условие задачи.

• Записываем данные в круги (или в диаграмму Эйлера).

• Выбираем условие, которое содержит больше свойств.

• Анализируем, рассуждаем, не забывая записывать результаты в части круга (диаграммы).

Логические задачи заставляют думать, рассуждать, составлять цепочку действий, последовательность, учат алгоритмизации, что немаловажно в современной жизни. А исследовательские работы учат искать информацию из различных источников (включая и интернет) и обрабатывать её, учат находить из большого материала лишь тот, который необходим.

На уроках математики мы решали эти задачи, некоторые из них вызывали у нас затруднение.

Диаграммы Эйлера — это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Моя работа заключалась в том, чтобы узнать подробнее об одном из разделов математики - комбинаторике. Я постаралась выяснить, какие комбинаторные методы применяются в наше время. Научилась составлять и решать задачи с помощью кругов Эйлера. В школьных учебниках мало комбинаторных задач. А ведь они включены в олимпиадные задания, ОГЭ и ЕГЭ. Поэтому мне захотелось помочь учителям и ребятам в изучении данной темы. Я надеюсь продолжить работу над этой темой, разработать уже задачи для учащихся старших классов. Самое главное я считаю, что своей работой я заинтересовала и учащихся нашей школы, и учителей. Ведь придумывая самостоятельно задачи, ребята будут развивать в себе еще логическое мышление и творческие способности.

Список использованной литературы

Гусев В. А., Орлов А. И., Розенталь А. Л. Внеклассная работа по математике в 6-8 классах: книга для учителя. М.: Просвещение, 1984– 286с

Савин А. П. Энциклопедический словарь юного математика – М.: Педагогика, 1989. – 352с.


КРУГИ ЭЙЛЕРА КАК НАГЛЯДНЫЙ И УДОБНЫЙ СПОСОБ РЕШЕНИЯ ЛОГИЧЕСКИХ ЗАДАЧ


Автор работы награжден дипломом победителя II степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Актуальность. В наше время вокруг нас собрано огромное количество информации и разобраться в ней бывает непросто. Находить логические связи между явлениями и понятиями помогают «Круги Эйлера» - это практичный и удобный метод решения логических задач. Многие слышали о них, но не все могут объяснить, что это такое. Круги Эйлера находят широкое применение, как в повседневной жизни, так и в науке, поэтому ими стоит уметь пользоваться каждому.

В исследовательской работе собрана вся необходимая информация для понимания, что такое Круги Эйлера и где их удобно применять.

Цель работы – познакомиться с методом решения задач теории множеств с использованием кругов Эйлера и составить сборник задач, которые можно решить с помощью кругов Эйлера.

В связи с поставленной целью необходимо решить следующие задачи:

изучить основные понятия теории множеств,

рассмотреть основные операции, которые можно производить с множествами,

рассмотреть понятие кругов Эйлера и изучить возможность их применения для решения задач,

разработать сборник задач, решаемых методом кругов Эйлера.

найти практическое применение кругов Эйлера.

Объектом исследованияявился процесс изучения раздела математики – теории множеств.

Предмет исследования – задачи из теории множеств, решаемые с использованием кругов Эйлера.

Гипотеза исследования: изучение темы «Элементы теории множеств» и разработка задач, решаемых с использованием кругов Эйлера, способствует повышению уровня математических знаний и развитию логического мышления учащихся.

Для решения поставленных задач будут использованы следующие методы исследования: анализ литературы по теме; изучение и сравнение методов решения.

Новизна работы заключается в авторском составлении задач по теме исследования и нахождении практического использования кругов Эйлера в современном мире.

Теоретическая и практическая значимость данной работы определяется тем, что результаты могут быть использованы на информатике, математике и других школьных предметах и сферах жизни. Исследовательская работа имеет выраженную практическую направленность, так как в работе автором представлены примеры применения кругов Эйлера во многих областях знаний, составлены свои задачи, которые могут быть использованы при изучении основ теории множеств. Данный материал можно использовать на факультативных занятиях по математике.

НАУЧНАЯ СТАТЬЯ

1. Теоретическая часть

1.1 Основные понятия из теории множеств

Слово «множество» мы часто используем в своей повседневной жизни. Вместе с тем, множество – это одно из основных понятий, используемых в математике. Что же такое множество?

В математике есть ряд понятий, которые не имеют определений. Они называются аксиоматическими, т.е они принимаются как исходные без доказательств.

К числу таких понятий относится и понятие множество.

Можно дать такое определение множества.

Множество – это набор элементов, который принимается как нечто целое.

Создателем теории множеств считается известный немецкий математик Георг Кантор (1845–1918). Он дал свое знаменитое определение понятия множества, которое звучит следующим образом:

«Под «множеством» мы понимаем объединение в одно целое М определенных вполне различаемых объектов m нашего восприятия или мышления (которые будут называться «элементами» множества M)» [2].

Примерами множеств могут быть следующие: множество учащихся 7 «А» класса школы № 2, множество натуральных чисел, множество дней недели, множество корней данного уравнения, множество учащихся гимназии № 5, посещающих музыкальную школу и т.п.

Обычно обозначают множества прописными (большими) буквами латинского алфавита. Т.е. множество A, множество Z и т.п. Есть общепринятые обозначения, например, множество N – это множество всех натуральных чисел. Элементы множества обозначаются обычно строчными (маленькими буквами), иногда с указанием номера, например, a1.

При этом принадлежность (или наоборот, непринадлежность) элемента к множеству описывается следующим образом:

х X, что означает элемент x принадлежит в множество X;

yX, что означает элемент y не принадлежит множеству X/

Если количество элементов состоит из определенного количества элементов (т.е. конечно), то такое множество называется конечным. Например, множество дней недели – конечно. Оно состоит из 7 элементов.

Если количество элементов множества неизвестно, т.е. бесконечно, то такое множество называется бесконечным. Например, множество всех натуральных числе является бесконечным [1].

На первый взгляд кажется, что слово «множество» предполагает, что элементов в нем «много». Однако, это не так. Существует понятие пустого множества. Пустое множество – это множество, которое не содержит ни одного элемента. Обозначается пустое множество знаком . Примером пустого множества может служить множество точек пересечения параллельных прямых.

Число элементов, входящих в множество, называется мощностью множества. Если множества содержат одинаковое число элементов, то они называются равномощными.

Есть несколько вариантов задания множества. Самый простой способ – это перечисление элементов, входящих в множество. При этом обычно элементы множества заключаются в фигурные скобки.

Например, множество A, состоящее из дней недели выглядит так:

Однако, такой способ задания применим только к конечным множествам, да и то не ко всем. Поэтому, чаще множества задаются при помощи определения какого-то условия, характеризующего свойства элементов, входящих в заданное множество.

Например, множество положительных чисел будет задано так:

Есть еще одно понятие, используемое в теории множеств. Это подмножество. Подмножество – это часть множества. Т.е если элементы множества B являются и элементами множества A, то множество B является подмножеством множества A. Математически это записывается так:

A= – множество оценок, которые может получить ученик, B= – множество положительных оценок, BA, множество B является подмножеством множества A.

1.2 Операции с множествами

Как с объектами математики, с множествами можно выполнять определенные действия (операции) [1]. К основным операциям, которые можно выполнять над множествами, относятся следующие:

Пересечение двух множеств A и B есть множество, каждый элемент которого принадлежит одновременно и множеству А, и множеству B. Проще говоря, пересечение множеств – это общая часть множеств. Обозначается пересечение множеств значком .

Например, есть множество A – это совокупность учащихся класса и множество B – это совокупность учащихся школы, занимающихся в спортивных секциях. Пересечением этих двух множеств будет множество C – совокупность учащихся данного класса, занимающихся в спортивных секциях. Математически запись выглядит следующим образом:

Объединение множеств – это множество, каждый элемент которого принадлежит либо множеству A, либо множеству B. Обозначается пересечение множеств значком . Т.е. в объединение множеств входят все элементы и множества A, и множества B.

Например, пусть множество A – множество мальчиков класса, B – множество девочек класса, тогда объединением этих множеств будут все учащиеся данного класса.

Математически это запишется следующим образом:

Разностьюдвух множеств A и B называют множество, каждый элемент которого принадлежит множеству A и не принадлежит множеству B. Причем, разность множеств B и A – это уже другое множество. Обозначается разность множеств значком . При этом если B является подмножеством множества A, то разность AB называется дополнением множества B до множества A [7].

Например, пусть А – множество учеников гимназии № 1, B – это множество школьников, посещающих бассейн. Тогда множество C является разностью множеств A и В и состоит из учеников гимназии № 1, которые не посещают бассейн, а множество D, являющееся разностью множеств B и A состоит из школьников, посещающих бассейн и не являющихся учащимися гимназии № 1.

Математически запись выглядит следующим образом:

1.3 Великий математик Леонард Эйлер и его вклад в науку

Выдающийся ученый Леонард Эйлер (Euler) (годы жизни 1707–1783 г.г.), по происхождению швейцарец, однако основную часть своей жизни работал в России.

Почти половину своей жизни Эйлер прожил в России. Неоспорима его заслуга в становлении российской науки. В 1726 году Петр I пригласил Эйлера в Петербургскую Академию наук и в 1727 году ученый переехал в Россию. В период с 1731 по 1741, а также с 1766 года был академиком Петербургской академии наук. В период с 1741 по 1766 годы ученый работал в Берлине, при этом он оставался почётным членом Петербургской Академии. Эйлер быстро выучил русский язык и часть его работ, в частности, ряд учебников написаны им на русском языке.

Эйлер был не только выдающимся математиком. Всего Эйлер написал более 800 работ. Сферы его интересов – это математический анализ, дифференциальная геометрия, теория чисел, приближенные вычисления. Кроме этого, Эйлер публиковал работы по небесной механике, математической физике, оптике, баллистике, кораблестроению, а также теории музыки и других дисциплин.

Человек, достаточно серьезно изучающий математику, понимает, что математика – это не определенная область науки, состоящая из чисел и вычислений. Это образ мышления, универсальный инструмент, который позволяет решать задачи не только в точных науках, но даже в искусстве, биологии, медицине, химии, изучении языков.

Что касается математики, то XVIII век заслуженно считается «веком Эйлера» [6].

Основная заслуга Эйлера, по мнению ряда исследователей [4] – это систематизация знаний в области математики и построение единой системы. Если до Эйлера, исследования в области математики были достаточно разрозненны и не всегда согласовались друг с другом, то Эйлер собрал отдельные части (алгебра, геометрия, тригонометрия и другие математические дисциплины) в единую систему. Кроме этого, Эйлер фактически создал новые математические дисциплины. К ним относятся теория чисел, математическая физика и ряд других.

По мнению биографов, Эйлер был виртуозным алгоритмистом [6].

И основная задача математики, по моему мнению, путем логических рассуждений выстроить алгоритм решения задачи.

2. Практическая часть

2.1. Круги Эйлера

Круги Эйлера – это схематическое изображение в виде круга, которое позволяет более наглядно изобразить множества и отношения между ними. Эйлер впервые использовал круги в известных «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе. ». Здесь он указывает, что «круги очень подходят для того, чтобы облегчить наши размышления». Для решения целого ряда задач Леонард Эйлер использовал идею геометрического изображения с помощью кругов, и этот ряд включал не только задачи из теории множеств. Такое изображение получило название «круги Эйлера» [3].

Таким образом, некоторое множество можно изобразить в виде круга, а элементы множества при этом представляют собой множество точек, принадлежащих этому кругу.

Рисунок 1. Представление множества в виде круга Эйлера.

Проиллюстрируем с помощью кругов Эйлера высказывания и операции над множествами, изложенные.

Рисунок 2. Элемент «а» принадлежит множеству A, а элемент «с» не принадлежит множеству А.

Рисунок 3. Множество B, являющееся подмножеством множества A

Пересечение двух множеств изображено на рисунке 4.

Рисунок 4 Изображение пересечения двух множеств с помощью кругов Эйлера

Рисунок 5. Объединение двух множеств

Рисунок 6. Разность множеств А и В.

Позже ряд математиков использовали идею Эйлера об использовании схематического изображения для отображения понятий. Аналогичный способ предлагал известный чешский математик Бернард Больцано (1781–1848). Только он использовал не круги, а прямоугольники. Также в своей книге «Алгебра логики» метод Эйлера использовал известный немецкий математик Эрнст Шредер (1841–1902). Но максимальное применение графических методов было предложено английским ученым-логиком Джоном Венном (1843–1923). Такой способ решения логических задач представлен им в книге «Символическая логика», изданной в Лондоне в 1881 году. Схемы получили название диаграмм Венна. Они используются для решения задач математической логики. Поэтому часто употребляется термин диаграммы Эйлера-Венна. При этом существуют различия между кругами Эйлера и диаграммами Венна. Оно состоит в том, что при использовании кругов Эйлера непересекающиеся множества изображаются непересекающимися кругами, а подмножество изображается кругом, вложенным в другой круг [5].

2.2 Задачи, решаемые с помощью кругов Эйлера

Из того, что мы рассмотрели ранее, становится очевидным, что графические изображения, сделанные с использованием кругов Эйлера, существенно упрощают понимание сложных математических формулировок, наглядно отражают сущность определений и доступны даже учащимся младших классов.

Поэтому целью моей работы является составление сборника задач (Приложение 2), которые можно решить с помощью кругов Эйлера. К сожалению, в школьной программе практически не упоминается про круги Эйлера, и не практикуется использование этого метода для решения задач. Всего составлено 37 задач, для учеников, ориентировочно, 7-11 классов. Основу составляют задачи на два множества(например № 1, №3, №4); встречаются задачи на три множества (например № 2, №11, №12). Также есть геометрические задачи(№ 29, №36, №37). К каждой задаче приведен ответ для проверки преподавателем и самопроверки. Задачи на два множества, как более простые, рекомендуются для младших классов.

Круги Эйлера - это не только простой, полезный и увлекательный способ решения задач. Это еще и метод, позволяющий развивать математические представления и использовать их при изучении окружающего нас мира.

Какие задачи можно решить с помощью кругов Эйлера? Удобнее всего, логические задачи на пересечение и объединение множеств.

Множеств может быть два, а может быть и больше. Чем больше множеств, тем труднее становится решить задачу.

Примеры решения задач приведены в приложении 1.

2.3. Практическое применение кругов Эйлера

Несмотря на то, что круги Эйлера помогают решать некоторые математические задачи, они имеют достаточно большое прикладное назначение. С их помощью на практике можно решать не только в математике, но и логике, теории вероятностей, статистике, логистике, менеджменте, и даже казалось бы в таких достаточно «далеких» от математики областях науки как биология, философия и социология [3].

Дело в том, что с помощью кругов Эйлера можно описывать не только множества, но и понятия. С их помощью можно исследовать отношения между различными группами.

Например, с помощью кругов Эйлера можно изобразить высказывание: «Все квадраты являются прямоугольниками». Соответствующая иллюстрация изображена на рисунке 7.

Рисунок 7. Отображения отношений между множествами

Возможно применение кругов Эйлера и в областях науки, не связанных с математикой. Проиллюстрируем это на примере. Сегодня достаточно большая часть людей регистрируется в социальных сетях. кроме того, члены социальных сетей вступают в определенные группы и сообщества. И в связи с такой распространенностью, социальные сети оказывают огромное влияние на формирование общественного мнения людей. Такие вопросы изучает социология.

Рисунок 8. Применение кругов Эйлера в социологическом исследовании

Таким образом, искомая область находится на пересечении трех областей.

Следовательно, используя круги Эйлера можно решать задачи в различных областях деятельности человека. В приложении 2 предложен ряд задач, которые можно решить, используя круги Эйлера.

Применение кругов Эйлера в информатике

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Читайте также: