Для защиты от гамма излучения рекомендуется использовать перегородки из следующих материалов

Обновлено: 23.04.2024

В соответствии с Федеральным законом "О радиационной безопасности населения" от 9.01.1996 N 3-ФЗ, в целях защиты населения и работников от влияния природных радионуклидов, по окончании строительства или реконструкции жилых и общественных зданий, застройщик должен получить разрешение на ввод в эксплуатацию объекта строительства с учетом уровня содержания радона в воздухе помещений и гамма-излучения природных радионуклидов.

Для этого необходимо провести радиационный контроль помещений зданий, включающий измерение мощности амбиентного эквивалента дозы (МАЭД) гамма-излучения на прилегающей территории, поиск и выявление локальных радиационных аномалий в ограждающих конструкциях зданий, МАЭД гамма-излучения в помещениях зданий и среднегодовое значение эквивалентная равновесная объемная активность (ЭРОА) изотопов радона в воздухе помещений зданий.
Контролируемой величиной в жилых домах и общественных зданиях является разность между МАЭД гамма-излучения в помещениях и на прилегающей территории, которая не должна превышать 0,3 мкЗв/ч.
Контроль МАЭД гамма-излучения в помещениях жилых домов и общественных зданий следует проводить в два этапа.
На первом этапе проводится гамма-съемка поверхности ограждающих конструкций помещений здания с целью выявления в сдающемся здании мощных источников гамма-излучения, представляющих непосредственную угрозу жизни и здоровью населения.
Гамма-съёмка осуществляется путем обхода всех помещений здания по свободному маршруту по центру помещений при непрерывном наблюдении за показаниями поискового прибора.

Если по результатам гамма-съемки в стенах и полах помещений не выявлено зон, в которых показания радиометра в 2 или более раз превышают среднее значение, характерное для остальной части ограждающих конструкций помещения, и при этом мощность дозы не превышает значения 0,3 мкЗв/ч в помещениях жилых и общественных зданий, то считается, что локальные радиационные аномалии в конструкциях зданий отсутствуют.
При обнаружении локальных радиационных аномалий в конструкциях зданий принимаются меры по их устранению.
На втором этапе проводятся измерения МАЭД гамма-излучения в квартирах жилых домов и помещениях общественных зданий. При этом в число контролируемых обязательно включаются помещения, в которых зафиксированы максимальные показания поисковых приборов, а также помещения после ликвидации обнаруженных локальных радиационных аномалий.
Для измерений выбирают помещения, ограждающие конструкции которых изготовлены из различных строительных материалов.
Также контролируемой величиной в жилых домах и общественных зданиях, сдающихся в эксплуатацию после окончания их строительства или реконструкции, является среднегодовое значение ЭРОА

изотопов радона в воздухе помещений.
Среднегодовое значение ЭРОА изотопов радона определяется во всех типовых помещениях здания (по функциональному назначению, площади, этажности, типу используемых строительных материалов и пр.). Радиационный контроль проводится в подготовленных помещениях: окна и двери должны быть закрыты не менее 12 часов, механическая принудительная вентиляция (при ее наличии) должна работать в типовом режиме, отделочные работы должны быть закончены.

По результатам радиационного контроля производится оценка соответствия жилых домов, общественных зданий санитарно-эпидемиологическим требованиям и гигиеническим нормативам радиационной безопасности при сдаче их в эксплуатацию.
При несоответствии результатов исследований требованиям НД и невозможности снижения уровня содержания ЭРОА радона и (или) МАЭД гамма-излучения природных радионуклидов в вводимых в эксплуатацию зданиях, должен быть изменен характер использования таких зданий (например, перевод в здание промышленного назначения, где норматив выше).

На основании вышеизложенного можно заключить, что радиологические исследования зданий,

вводимых в эксплуатацию, проводить необходимо, т.к. не все строительные организации, к сожалению, ответственно относятся к обеспечению безопасности здоровья будущих жильцов (работников). Нельзя исключать вероятность того, что в процессе строительства могли использоваться радиоактивные материалы, либо материалы, не имеющие сертификата радиационной безопасности. Они могут стать причиной превышений по гамма-фону! А ведь, как известно, радиация незаметна. Она не имеет ни цвета, ни запаха. Человек не способен почувствовать гамма-излучение вплоть до смертельной дозы! Поэтому для охраны здоровья населения Госкомсанэпиднадзором были установлены нормы и предельные значения МЭД гамма-излучения и ЭРОА радона в соответствии с действующими в этой сфере нормативными документами и, соответственно, их необходимо соблюдать: для основного населения поглощенная доза гамма-излучения не должна превышать 1мЗв в год. Если сделать перерасчет на часы, то получится 0,57 мкЗв/ч. Это будет верхним пределом для человека.

Радон в тех или иных количествах неизбежно присутствует в воздухе любого здания независимо от типа его конструкции, хотя бы потому, что ЭРОА (проще говоря, содержание) радона в атмосферном воздухе вне помещений отлична от нуля и в среднем составляет около 10 Бк/м 3 (ПДК для вводимых в эксплуатацию жилых и общественных зданий составляет 100 Бк/м 3 , для эксплуатируемых зданий- 200 Бк/м 3 ).

Практически во всех зданиях она значительно выше, чем в атмосферном воздухе.

Повышенное содержание радона в здании может быть обусловлено комплексом причин: радоноопасный грунт под зданием; некачественные строительные материалы, которые либо не проходили радиационные испытания, либо прошли испытания и их класс оказался ниже требуемого; движущая сила, пробуждающая радон поступать внутрь здания (например, разность температуры и давления на улице и внутри здания или лифт может являться поршнем, выкачивающим радон из подвала; наличие путей проникновения радона внутрь оболочки здания (трещины, вводы коммуникаций).

Поэтому, единственно верный путь, чтобы узнать содержание данного газа в воздухе помещений- это радиационное обследование.

Обследование объектов при сдаче в эксплуатацию – одна из приоритетных услуг нашей организации. На этапе сдачи в эксплуатацию законченного объекта строительства или реконструкции специалисты ФБУЗ «Центр гигиены и эпидемиологии в Республике Мордовия» проводят поисковую гамма-съемку, измерение уровней МАЭД гамма-излучения на открытой местности и в помещениях зданий, измерения воздушной среды помещений на содержание ЭРОА радона в соответствии с областью аккредитации. По итогам проведения процедуры, заказчик получает протоколы измерений и экспертное заключение о соответствии сдаваемого объекта санитарно-эпидемиологическим правилам, нормативам и, таким образом, располагает исчерпывающей информацией о радиационной обстановке в помещениях зданий, вводимых в эксплуатацию.

В случае Вашей заинтересованности, получить информацию по всем интересующим Вас вопросам можно по телефонам: (8342) 24-89-97, 24-59-01 и 24-80-13. Консультация - бесплатно.

Ежедневно человек в своей обычной жизни постоянно подвергается воздействию ионизирующей радиации. Это и естественные радионуклиды, находящиеся в земле, пище, растениях, организме человека, а также космическое излучение. Все это естественное облучение, они невелико и не оказывает вреда на человека.

Однако есть другой вид облучения – техногенный. Такие воздействия опасны по своей природе и ведут к изменениям в организме человека. К ним относятся также производственные излучения.

Под ионизирующим излучением понимают любой вид излучения, который при взаимодействии со средой образовывает электрические заряды.

Нестабильные нуклиды при распаде высвобождают энергию, которая называется радиоактивной. При активном процессе распада и выделения такой энергии образуется радиоактивное излучение. Рассеивание радионуклидов – это заражение радиацией почвы, воздуха, земли и т.д.

Как источники таких излучений необходимо рассматривать ядерные реакторы, рентгеновские аппараты, установки для ускорения заряженных частиц, мощные высоковольтные источники питания и др. При работе с ними следует регулярно проводить замеры радиации.

Ионизирующее излучение и организм человека

Контакт человека с ионизирующими излучениями несет для организма опасность. Степень этой опасности пропорциональна количеству поглощенной организмом человека энергии, а также ее пространственному распределения по органам и тканям. Иными словами важно, какая была мощность излучения, как долго воздействие длилось во временных рамках.

Опасность радиации определяется также видом воздействующего излучения. Больший вред для человека несут тяжелые заряженные частицы и нейтроны, рентгеновское и гамма-излучение менее опасно.

При воздействии такого рода излучения на человеческий организм в нем возникают различные изменения. В целях недопущения изменений в организме необходимо использовать защиту при проведении манипуляций с радиоактивными веществами.

Мероприятия по защите от ионизирующих излучений

Грей – доза радиоактивного излучения, которая была поглощена единицей массы облучаемого тела. Однако эта единица измерения не учитывает очень важный факт – вид радиации. Именно поэтому существует еще одна, более надежная величина – зиверты. Ее расчет заключается в умножении поглощенной дозы на коэффициент ее опасности для человека.

Основываясь на критерий дозы воздействия и степени ее опасности Закон о радиационной безопасности населения регламентирует безопасные нормы:

  • для работников, связанных с трудовой деятельностью, предполагающую наличие источника ионизирующего излучения — 20 мЗв (миллизивертов) в год;
  • для остального населения – 1 мЗв.

В целях защиты от радиации необходимо принимать ряд мер, направленных на минимизацию вреда для человека:

В работе представлены исследования по синтезу радиационно-защитного композита. В качестве связующего материала для радиационно-защитного композита использовали стекломатрицу, а в качестве защитного наполнителя использовали нанотрубчатый хризотил, модифицированный путем введения в структуру нанотрубок вольфрамата свинца PbWO4 в количестве до 30 масс. %. В результате исследований был синтезирован композиционный материал, содержащий в себе 10 % нанотрубчатого хризотила, 50 % вольфрамата свинца, остальное – стекломатрица со следующими физико-механическими показателями: плотность 6,3 г/см3, предел прочности при сжатии 280 МПа, микротвердость 355 МПа, пористость 0,4 %. Анализ всех проведенных результатов показал высокую радиационную стойкость разработанного композита на основе стекломатрицы и нанотрубчатого хризотила, модифицированного путем введения в структуру нанотрубок вольфрамата свинца PbWO4.


1. Матюхин П.В. Жаропрочный радиационно-защитный композиционный материал конструкционного назначения / П.В. Матюхин, В.И. Павленко, Р.Н. Ястребинский, Н.И. Черкашина, В.А. Дороганов, Е.И. Евтушенко // Огнеупоры и техническая керамика. – 2014. – № 10. – С. 32–36.

2. Матюхин П.В. Термостойкие радиационно-защитные композиционные материалы, эксплуатируемые при высоких температурах / П.В. Матюхин, В.И. Павленко, Р.Н. Ястребинский, В.А. Дороганов, Н.И. Черкашина, Е.И. Евтушенко // Огнеупоры и техническая керамика. – 2014. – № 7–8. – С. 23–25.

3. Павленко В.И. Влияние вакуумного ультрафиолета на микро- и наноструктуру поверхности модифицированных полистирольных композитов / В.И. Павленко, Г.Г. Бондаренко, Н.И. Черкашина, О.Д. Едаменко // Перспективные материалы. – 2013. – № 3. – С. 14–19.

4. Павленко В.И. Влияние вакуумного ультрафиолета на поверхностные свойства высоконаполненных композитов / В.И. Павленко, В.Т. Заболотный, Н.И. Черкашина, О.Д. Едаменко // Физика и химия обработки материалов. – 2013. – № 2. – С. 19–24.

5. Павленко В.И. Влияние содержания кремнийорганического наполнителя на физико-механические и поверхностные свойства полимерных композитов / В.И. Павленко, Н.И. Черкашина, В.В. Сухорослова, Ю.М. Бондаренко // Современные проблемы науки и образования. – 2012. – № 6. – С. 95.

6. Павленко В.И. Дефектность кристаллов модифицированного гидрида титана, подвергнутого термической обработке / В.И. Павленко, О.В. Куприева, Н.И. Черкашина, Р.Н. Ястребинский // Известия высших учебных заведений. Физика. – 2015. – Т. 58. № 5. – С. 125–129.

7. Павленко В.И. Изучение коэффициентов ослабления фотонного и нейтронного пучков при прохождении через гидрид титана / В.И. Павленко, О.Д. Едаменко, Н.И. Черкашина, О.В. Куприева, А.В. Носков // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2015. – № 6. – С. 21.

8. Павленко В.И. Модифицирование поверхности гидрида титана боросиликатом натрия / В.И. Павленко, Г.Г. Бондаренко, О.В. Куприева, Р.Н. Ястребинский, Н.И. Черкашина // Перспективные материалы. – 2014. – № 6. – С. 19–24.

9. Павленко В.И. Радиационно-защитный композиционный материал на основе полистирольной матрицы / В.И. Павленко, О.Д. Едаменко, Р.Н. Ястребинский, Н.И. Черкашина // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2011. – № 3. – С. 113–116.

10. Павленко В.И. Расчет ионизационных и радиационных энергетических потерь быстрых электронов в полистирольном композите / В.И. Павленко, Г.Г. Бондаренко, Н.И. Черкашина // Перспективные материалы. – 2015. – № 8. – С. 5–11.

11. Павленко В.И. Повышение эффективности антикоррозионной обработки ядерного энергетического оборудования путем пассивации в алюминийсодержащих растворах / В.И. Павленко, В.В. Прозоров, Л.Л. Лебедев, Ю.И. Слепоконь, Н.И. Черкашина // Известия высших учебных заведений. Серия: Химия и химическая технология. – 2013. – Т. 56. № 4. – С. 67–70.

12. Павленко В.И. Экспериментальное и физико-математическое моделирование воздействия набегающего потока атомарного кислорода на высоконаполненные полимерные композиты / В.И. Павленко, Л.С. Новиков, Г.Г. Бондаренко, В.Н. Черник, А.И. Гайдар, Н.И. Черкашина, О.Д. Едаменко // Перспективные материалы. – 2012. – № 4. – С. 92–98.

13. Павленко В.И. Эффективный способ получения термостойкого кристаллического нанопорошка вольфрамата свинца для жаростойких радиационно-защитных материалов / В.И. Павленко, Р.Н. Ястребинский, В.А. Дороганов, И.В. Соколенко, Н.И. Черкашина, Е.И. Евтушенко // Огнеупоры и техническая керамика. – 2014. – № 7–8. – С. 32–36.

14. Павленко В.И. Явления электризации диэлектрического полимерного композита под действием потока высокоэнергетических протонов / В.И. Павленко, А.И. Акишин, О.Д. Едаменко, Р.Н. Ястребинский, Д.Г. Тарасов, Н.И. Черкашина // Известия Самарского научного центра РАН. – 2010. – Т. 12. № 4–3. – С. 677–681.

15. Павленко В.И. Суммарные потери энергии релятивистского электрона при прохождении через полимерный композиционный материал / Павленко В.И., Едаменко О.Д., Черкашина Н.И., Носков А.В. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2014. – № 4. – С. 101–106.

16. Черкашина Н.И. Воздействие вакуумного ультрафиолета и кислородной плазмы на структуру и устойчивость полистирольного композита с органосилоксановым наполнителем: диссертация . кандидата технических наук. – Белгород, 2013.

17. Черкашина Н.И. Исследование влияния вакуумного ультрафиолета на морфологию поверхности нанонаполненных полимерных композиционных материалов в условиях, приближённых к условиям околоземного космического пространства / Черкашина Н.И., Павленко В.И., Едаменко А.С., Матюхин П.В. // Современные проблемы науки и образования. – 2012. – № 6. – С. 130.

18. Черкашина Н.И. Воздействие вакуумного ультрафиолета на полимерные нанокомпозиты // Инновационные материалы и технологии (ХХ научные чтения): Материалы Межд. научно-практич. конференции. – 2010. – С. 246–249.

19. Черкашина Н.И. Моделирование воздействия космического излучения на полимерные композиты с применением программного комплекса GEANT4 // Современные проблемы науки и образования. – 2012. – № 3. – С. 122.

20. Черкашина Н.И. Перспективы создания радиационно-защитных полимерных композитов для космической техники в Белгородской области / Н.И. Черкашина, В.И. Павленко / Белгородская область: прошлое, настоящее, будущее. Материалы областной научно-практической конференции в 3-х частях. – 2011. – С. 192–196.

21. Черкашина Н.И. Разработка наноструктурированных вяжущих на основе местного сырья Белгородской области для штукатурных растворов// В сборнике: Материалы I Международной научно-практической конференции «Проблемы строительного производства и управления недвижимостью». – Кемерово, 2010. – С. 67–70.

22. Черкашина Н.И. Синтез высокодисперсного гидрофобного наполнителя для полимерных матриц / Н.И. Черкашина, А.А. Карнаухов, А.В. Бурков, В.В. Сухорослова // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2013. – № 6. – С. 156–159.

23. Ястребинский Р.Н. Модифицированные железооксидные системы – эффективные сорбенты радионуклидов / Р.Н. Ястребинский, В.И. Павленко, Г.Г. Бондаренко, А.В. Ястребинская, Н.И. Черкашина // Перспективные материалы. – 2013. – № 5. – С. 39–43.

24. Ястребинский Р.Н. Структурно-фазовая характеристика боросиликатного покрытия // Р.Н. Ястребинский, О.В. Куприева, Н.И. Черкашина // Известия высших учебных заведений. Серия: Химия и химическая технология. – 2014. – Т. 57. – № 9. – С. 20–23.

25. Matyukhin P.V. The high-energy radiation effect on the modified iron-containing composite material / P.V. Matyukhin, V.I Pavlenko, R.N. Yastrebinsky, N.I. Cherkashina // Middle East Journal of Scientific Research. – 2013. – Т. 17. № 9. – Р. 1343–1349.

26. Pavlenko V.I. Effect of vacuum ultraviolet on the surface properties of high-filled polymer composites / V.I. Pavlenko, N.I. Cherkashina, O.D. Edamenko, V.T. Zabolotny // Inorganic Materials: Applied Research. – 2014. – Т. 5. № 3. – Р. 219–223.

27. Pavlenko V.I. Modification of titanium hydride surface with sodium borosilicate / V.I. Pavlenko, O.V. Kuprieva, R.N. Yastrebinskii,N.I. Cherkashina, G.G. Bondarenko/ Inorganic Materials: Applied Research. – 2014. – Т. 5. № 5. – Р. 494–497.

28. Pavlenko V.I. Total energy losses of relativistic electrons passing through a polymer composite / V.I. Pavlenko, O.D. Edamenko, N.I. Cherkashina, A.V. Noskov // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. – 2014. – Т. 8. № 2. – Р. 398–403.

29. Pavlenko V.I. Using the high-dispersity [alpha]-Al2O3 as a filler for polymer matrices, resistant against the atomic oxygen / V.I. Pavlenko, N.I. Cherkashina, A.V. Yastrebinskaya, P.V. Matyukhin.,O.V. Kuprieva // World Applied Sciences Journal. – 2013. – Т. 25. № 12. – Р. 1740–1746.

30. Pavlenko V.I. Study of the attenuation coefficients of photon and neutron beams passing through titanium hydride / V.I. Pavlenko, O.D. Edamenko, N.I. Cherkashina, O.V .Kuprieva, A.V. Noskov // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. – 2015. – Т. 9. № 3. – Р. 546–549.

31. Slyusar’ O.A. Effect of additives on dispersed system structure formation / O.A. Slyusar’, R.N. Yastrebinskii, N.I. Cherkashina, V.A. Doroganov, A.V. Yastrebinskaya // Refractories and Industrial Ceramics. – 2015.

32. Yastrebinsky R.N. Modifying the surface of iron-oxide minerals with organic and inorganic modifiers/ R.N. Yastrebinsky, V.I. Pavlenko, P.V. Matukhin, N.I. Cherkashina, O.V. Kuprieva // Middle East Journal of Scientific Research. – 2013. – Т. 18. № 10. – Р. 1455–1462.

В настоящее время широкое использование получили композиционные материалы для защиты от ионизирующего излучения (ИИ). Как известно, для создания защиты от каждого вида ИИ требуется свой подход. Тяжелые элементы хорошо защищают от гамма-излучения, тогда как легкие элементы (водород, бор) лучше использовать для защиты от нейтронного излучения [6–8, 11, 24].

В космосе другая ситуация. Там нужно защищаться от вакуумного ультрафиолета, набегающего потока атомарных частиц, в особенности атомарного кислорода, резкого перепада температур и т.д. Имеется множество работ по повышению устойчивости полимерных композиционных материалов к негативным факторам космоса [3, 4, 10–19].

К настоящему моменту создано много материалов радиационно-защитного назначения. Однако, большинство из них способны защитить только от одного вида ИИ и имеют ряд других физико-механических и эксплуатационных недостатков [1, 2, 5, 9, 13, 23]. К ним можно отнести малый температурный диапазон использования, невысокую прочность при сжатии и изгибе, повышенную себестоимость.

В некоторых случаях, к примеру, при разработке радиационной защиты для перспективных космических аппаратов, оснащенных ядерными энергетическими установками, требования к защитным материалам особенно высоки [20–22, 25–32]. В случае же проектирования радиационной защиты атомных подводных лодок требования снижаются, но все же следует уделять внимание максимальному снижению объема, занимаемого защитными конструкциями, и повышению температурного интервала их эксплуатации.

Таким образом, разработка радиационно-защитного композита для защиты от гамма-излучения является перспективным направлением.

Цель исследования

Изучить возможность синтеза радиационно-защитного композита для защиты от гамма- излучения.

Материалы и методы исследования

В качестве связующего материала для радиационно-защитного композита была выбрана стекломатрица, химический состав которой представлен в табл. 1.

Таблица 1

Химический состав стекломатрицы

В качестве защитного наполнителя использовали нанотрубчатый хризотил, модифицированный путем введения в структуру нанотрубок вольфрамата свинца PbWO4 в количестве до 30 масс. %. Применение данного наполнителя обусловлено сочетанием улучшенных физико-химических и механических свойств гидросиликатных нанотрубок, а также повышением физико-механических показателей, температуро- и радиационной стойкости композита по сравнению с обычным дисперсным наполнителем.

Результаты исследования и их обсуждение

В результате исследований был синтезирован композиционный материал, содержащий в себе 10 % нанотрубчатого хризотила, 50 % вольфрамата свинца, остальное – стекломатрица.

Физико-механические характеристики разработанного материала представлены в табл. 2.

Таблица 2

Основные характеристики разработанного композита

Плотность, г/см 3

Предел прочности при сжатии, МПа

Микротвердость HV, МПа

Методом математического моделирования были проведены расчеты линейного коэффициента ослабления гамма-излучения для рассматриваемого состава композита. Расчеты производились по стандартным методикам в программе MathCad. На рис. 1 представлена зависимость полученного линейного коэффициента ослабления от энергии излучения.

sokol1.tif

Рис. 1. Кривая зависимости линейного коэффициента ослабления в разработанном композите от энергии излучения

Анализ рис. 1 показывает, что линейный коэффициент ослабления уменьшается при увеличении энергии излучения. Для достоверности разработанной модели по вычислению линейного коэффициента ослабления был экспериментально по интенсивности поглощения без материала и с защитным материалом вычислен линейный коэффициент ослабления. Исследования проводили на специализированном оборудовании Гамма-дефектоскоп «Гаммарид-192/120МД». Использовали источник излучения на основе радионуклида 192 Ir, эффективная энергия γ-излучения составила 0,4 МэВ. На рис. 2 представлены основные радиационно-защитные характеристики разработанного композита (СХВ 10-50), а также для сравнения железа и свинца.

Анализ линейного коэффициента ослабления по моделированию и расчетного при одной и той же энергии 0,4 МэВ достаточно близки. Погрешность составляет не более 7 %. Поэтому можно сказать, что разработанная модель по расчету линейного коэффициента ослабления является достоверной.

Анализ всех проведенных результатов показал высокую радиационную стойкость разработанного композита на основе стекломатрицы и нанотрубчатого хризотила, модифицированного путем введения в структуру нанотрубок вольфрамата свинца PbWO4.

sokol2.wmf

Рис. 2. Основные радиационно-защитные характеристики разработанного композита (СХВ 10-50), железа и свинца

Заключение

В работе представлены исследования по синтезу радиационно-защитного композита. В качестве связующего материала для радиационно-защитного композита использовали стекломатрицу, а в качестве защитного наполнителя использовали нанотрубчатый хризотил, модифицированный путем введения в структуру нанотрубок вольфрамата свинца PbWO4 в количестве до 30 масс. %.

В результате исследований был синтезирован композиционный материал, содержащий в себе 10 % нанотрубчатого хризотила, 50 % вольфрамата свинца, остальное – стекломатрица со следующими физико-механическими показателями: плотность 6,3 г/см 3 , предел прочности при сжатии 280 МПа, микротвердость 355 МПа, пористость 0,4 %.

Методом математического моделирования были проведены расчеты линейного коэффициента ослабления гамма-излучения для рассматриваемого состава композита. Анализ линейного коэффициента ослабления по моделированию и расчетного при одной и той же энергии 0,4 МэВ достаточно близки. Погрешность составляет не более 7 %. Поэтому можно сказать, что разработанная модель по расчету линейного коэффициента ослабления является достоверной.

Анализ всех проведенных результатов показал высокую радиационную стойкость разработанного композита на основе стекломатрицы и нанотрубчатого хризотила, модифицированного путем введения в структуру нанотрубок вольфрамата свинца PbWO4.

Работа выполнена при поддержке проектной части Государственного задания Минобрнауки РФ, проект № 11.2034.2014/K.

Рентгенологическое обследование – один из наиболее распространенных и эффективных методов диагностики заболеваний, в основе которого лежит использование гамма-излучения. При длительном воздействии рентгеновские лучи оказывают негативное воздействие на живые клетки человеческого организма, поэтому с целью защиты все кабинеты рентгенодиагностики оснащают защитными средствами. Особая конструкция и использование специальных материалов позволяет задерживать гамма-лучи, не давая им проникать через окна, ширмы, двери и ставни.

Особенности рентгеновского излучения

Впервые гамма-лучи, которые используются сегодня в любом рентген-аппарате, были открыты в конце XIX века. Спустя некоторое время была обнаружена их способность просвечивать организм человека. Сегодня при помощи рентгеноскопии определяют множество заболевания костной, бронхо-легочной и прочих систем организма, давая возможность врачу на ранней стадии увидеть заболевание или последствия травм внутренних органов.

Установлено, что гамма-лучи при длительном воздействии на человека способны вызвать негативные последствия в работе внутренних органов на клеточном уровне. По этой причине защита от рентген-излучений процедурных кабинетов является обязательной, что определяется нормами и требованиями документов ОСПОРБ-99, СанПиН 2.6.1.1192–03 и НРБ-99. Современные процедуры по выполнению рентген-снимка предусматривают минимальную дозу радиации, которая не несет никакого вреда пациенту.

Однако сам процедурный кабинет должен быть надежно защищен от вредного воздействия изучения, чтобы исключить риск попадания лучей на медицинский персонал, инвентарь и предметы мебели. По этой причине процедурные кабинеты должны оснащаться только специальными рентгенозащитными средствами в виде ширм, дверей и окон.

Характеристики и свойства рентгенозащитных материалов

Для эффективного противодействия гамма-излучению используются материалы, способные задерживать лучи. Наиболее эффективным из них является свинец, который выступает сегодня в роли эквивалента, при помощи которого определяют степень защиты. Для лучшего понимания особенностей современных рентгенозащитных материалов для кабинета будет полезным рассмотреть их более подробно.

Рентгенозащитные изделия

Свинец листовой

Свинец является достаточно мягким металлом, что упрощает процесс изготовления из него защитных средств. Чаще всего его применяют в качестве листов или пластин, размерами 500х1000 мм и толщиной от 0,5 до 5 мм. Важно, чтобы свинец соответствовал требованиям ГОСТа 9559-89, что должно подтверждаться сертификационными документами.

Рентгенозащитное стекло

Для всех процедурных кабинетов, где устанавливаются рентген-аппарат, применяется специальное стекло с высоким содержанием кварца. При его изготовлении обязательно добавляются такие компоненты, как свинец (не менее 55%) и оксиды тяжелых металлов (не менее 60%). Кварцевое стекло имеет высокую степень прозрачности, что позволяет врачу полностью контролировать процедуру.

Рентгенозащитные панели

С целью защиты стен и потолка процедурного кабинета применяются специальные рентгенозащитные панели, которые изготавливаются из свинцового гипсокартона. Отделочный материал представляет собой соединенные между собой листы гипсокартона и свинца (толщина от 0,5 до 4 мм), который весит немного больше обычного. По этой причине при монтаже используют усиленные крепежи в виде дюбелей. После монтажа лист шпаклюется и окрашивается, что придает ему эстетически привлекательный вид.

Свинцовые кирпичи

Кирпичи из свинца

При строительстве современных медицинских комплексов на стадии проектирования рентген-кабинетов предусматривается использование свинцовых кирпичей. Укладываемые по схеме «ласточки хвост» с замком, они обеспечивают эффективную защиту соседних помещений от проникновения гамма-лучей при использовании аппарата. Выпускаются кирпичи специальными компаниями, которые специализируются на производстве продукции для рентген-кабинетов.

Концентрат барита

Баритовый концентрат

Неплохую защиту помещения обеспечивает также концентрата барита, представляющий собой мелкий порошок светло-серого или светло-желтого цвета. Благодаря высокому удельному весу материала, при оштукатуривании помещения составами с добавлением воды, цемента и концентрата барита создается сплошная пленка, через которую гамма-лучи проходить не могут. Из достоинств материала также выделяют его бюджетную стоимость, благодаря чему состав активно используется при капитальном ремонте процедурных кабинетов медицинского учреждения.

Оборудование и изделия для защиты от рентген-излучения

Согласно требованиям СанПиН 2.6.1.1192-03 в любом современном кабинете, где оказываются услуги по флюорографии, должны быть предусмотрены меры защиты от рентгеновских лучей. С этой целью используются особые двери, окна, ширмы и ставни, особенности которых рассмотрим подробнее ниже.

Рентгенозащитные ставни

Все окна кабинетов рентгенодиагностики, которые выходят на улицу или во двор, должны быть также надежно защищены. Для этого на них обычно устанавливаются ставни, изготавливаемые из листового свинца, соответствующим нормам ГОСТа 9559-75. Толщина профиля составляет от 0,5 – 5 мм, чего вполне достаточно для противодействия гамма-лучам. Крепят свинцовые ставни с двумя открывающимися створками на стальную раму при помощи петельных механизмов. Рама монтируется к бетонному переплету при помощи анкерных крепежей. В составе конструкции также присутствует специальный экран, изготовленный из двухслойного пластика с рентгенозащитным материалом между слоями.

Рентгенозащитные двери

Устанавливаются с целью защиты медицинского персонала и пациентов от вредного гамма-излучения при проведении рентгенодиагностических обследований. Обычно монтируются в зоне разделении процедурного кабинета и комнаты управления аппаратом. Из отличительных особенностей выделяют наличие в качестве дверного полотна стального профиля, внутри которого размещают огнестойкий пенополиуретан, а также один или несколько слоев свинца. Двери выпускаются не только одно-, но также двухстворчатыми, откатными или распашными. В современных частных клиниках часто можно встретить двери с автоматическим открывающим механизмом.

Рентгенозащитные окна

Кварцевые рентгенозащитные окна монтируют в комнатах пультового управления, где медицинский персонал управляет аппаратом и контролирует процесс осуществления процедуры. Окна производятся из специального сплава с добавлением большого количества свинца, причем устанавливаются в заблаговременно подготовленные проемы. При монтаже окон важно не допустить никаких зазоров, поэтому к работе привлекают только опытных и квалифицированных мастеров. Правильная установка позволяет обеспечить эффективную защиту по всей площади окна и рамы.

Рентгенозащитные ширмы

Ширма относится к удобным и мобильным средствам эффективной защиты от гамма-излучений. Она представляет собой 2 панели, изготовленных из листового свинца, толщиной от 0,5 – 3 мм, которые закреплены на стальной раме и облицованы пластиком. Для удобства передвижения такая ширма размещается на тележке с колесиками и тормозным механизмом, что позволяет легко устанавливать ее в нужном месте кабинета или же использовать для локальной защиты конкретного человека.

Ширмы от рентгеновских лучей

Нормативно-технические требования к установке

При проектировании кабинета для рентгендиагностики от вредного излучения защищаются не только стены, но также потолочное пространство. Обычно монтаж рентгенозащитного потолка осуществляется при помощи специальных панелей со свинцовым покрытием. Благодаря этому обеспечивается эффективная защита помещений, находящихся на верхнем этаже от вредных излучений.

При монтаже изделий, относящихся к категории рентгенозащитных, принимают во внимание регламентные требования следующих нормативно-правовых документов:

Неукоснительное соблюдение правил изоляции рентгенкабинетов позволяет обеспечить надежную радиологическую защиту процедурных помещений. Благодаря этому достигается безопасность всех находящихся внутри людей – медицинского персонала и пациентов.

Правильный выбор защитного оборудования

Лучше всего осуществлять выбор защитного оборудования еще на этапе проектирования процедурного кабинета. Это позволяет учесть все нюансы, включая площадь и планировку помещения, планировку, конкретное место расположения рентгеновского аппарата и пульта управления, зоны ожидания для пациентов.

В КАКИХ СТРАНАХ МЫ РАБОТАЕМ

За более чем 10 лет работы группа компаний MAX Clean Room успела поработать с 15 странами на рынках СНГ, Азии и Европы. На сегодняшний день офисы компании располагаются в 5 странах. Мы постоянно работаем над расширение географии работы и с радостью осваиваем новые страны и территории. Приглашаем местные компании к сотрудничеству!

Защита от гамма-излучения

Основным вариантом для защиты от альфа-, бета-, гамма-излучения выступает экранирование, а также использование специализированных индивидуальных защитных средств, которые обеспечат безопасность человека в опасных условиях радиации.

Различают несколько типов вредного излучения, каждый из которых имеет свою проникающую способность и, исходя из этого, особенность защиты:

  • Альфа-излучение обладает небольшой проникающей способностью, поэтому для защиты от него достаточно будет использование рабочих перчаток из резины, пластиковых очков, простого респиратора.
  • Бета-излучение отличается большей способностью проникать в различные материалы, поэтому для безопасности человека необходимо использовать противогаз, экраны на основе тонкого слоя алюминия и стекла.
  • Гамма-излучение проникает практически в любую поверхность кроме вольфрама, свинца, чугуна.
  • Для защиты от гамма- и нейтронного излучения требуется использование многослойных экранов.

Источниками радиации выступает не только радионуклиды, но и в частности прохождение флюорографического обследования, компьютерной томографии.

Чтобы понять какая защита от гамма-излучения наиболее эффективна, необходимо определиться с источником радиации.

Защита от внешнего гамма-излучения

Источниками внешнего радиационного опасного излучения выступают:

  • радиоактивные вещества;
  • ядерные реакторы;
  • рентгеновское оборудование и т. д.

Использование источников радиации предполагает соблюдение специализированных необходимых мер защиты. Допустимые уровни облучения прописаны в нормах радиационной безопасности, которые обязательно должен знать рабочий персон и не превышать указанных данных.

Обычно для защиты от гамма-излучения целесообразно применять защитные сооружения, которые экономически выгодны и обеспечат значительное ослабление радиационного воздействия. Мощность точечного источника радиации прямо пропорциональна активности облучения, поэтому ее удается ограничить путем меньшего использования и на большем удалении.

Такой вариант защиты предусматривает возможность выполнения работ в определенный промежуток времени, который не позволит получить большую дозу облучения, так как первое свойство ионизирующего излучения — это накопление. Следовательно, чем меньше времени человек находится в зоне повышенного радиационного фона, тем меньший вред это нанесет его здоровью.

Следующий способ защиты от внешнего гамма-излучения выступает снижение его мощности при увеличении расстояния между источником изучения и объекта. Четкие указания по допустимому промежутку времени для нахождения вблизи источника излучения предъявляются рабочему персоналу, по истечению которого люди должны выводиться в безопасную зону.

При работе с источниками повышенной радиационной активности необходимо применение специализированных многослойных экранов, позволяющих существенно снизить интенсивность проникновения опасного излучения.

Отличной защитой от гамма-излучения являются материалы с большим атомным номером и высокой плотностью:

  • Свинец.
  • Сталь.
  • Бетон.
  • Свинцовое стекло.

В зависимости от мощности гамма-лучей подбирается необходимый материал для повышенной защиты здоровья людей.

Защита от гамма-излучения: свинец

Для защиты от гамма-излучения применяют чаще всего свинцовый лист. Металл способен задерживать заряженные крупные и мелкие радиационные частицы, а также комбинированные излучения.

Используется свинцовые изделия в медицине, научных институтах, лабораториях для защиты от гамма-лучей, рентгеновского излучения от специализированных приборов в поликлиниках.

Помещения для диагностики организма при помощи рентген аппаратов обязательно должны быть экранированы свинцовыми пластинами во избежание избыточного облучения как медицинского персонала, так и пациентов.

Для защиты от гамма-излучения целесообразно использовать специализированную одежду со свинцовыми прокладками:

Свинцовое стекло используется при проведении опытов с радиоактивными веществами, оно необходимо для установки в специализированном оборудовании в качестве смотрового окна.

Свинец выступает тяжелым металлом, который не взаимодействует с бета- и гамма-лучами, радиоактивными изотопами, поэтому станет эффективным для них препятствием.

Способы защиты от гамма-излучения внутри зданий

Для защиты от внутреннего облучения проводятся мероприятия по уменьшению накопления опасной радиоактивной пыли — это специализированная облицовка стен, пола, потолка, проведение регулярной влажной уборки помещений, обустройство эффективной вытяжной вентиляции.

Дополнительно требуется тщательная личная гигиена персонала, применение индивидуальных средств защиты от альфа излучения (это комбинезоны, шапочки, очки, резиновые перчатки, сапоги, респираторы либо шланговые противогазы). При надевании и снятии СИЗ, чтобы не загрязнить одежду и кожные покровы, окружающие предметы необходимо четко следовать инструкции, проводить контроль мощности дозы рентгеновского и прочего излучения.

Расчет защиты от гамма-излучения

Когда рентгеновские лучи проходят через вещество, они не полностью поглощаются материалом, а ослабляются, то есть уменьшается их интенсивность.

Величина ослабления может быть описана математическим соотношением: линейный коэффициент ослабления зависит от следующих данных:

  • типа защитного материала;
  • энергии падающего рентгеновского излучения.

Определить максимальную длину пробега гамма-излучения необходимо с учетом атомной массы, плотности поглощающего вещества.

Мощность дозы источников гамма-излучения может быть измерена соответствующими приборами или подсчитана математически.

После измерения мощности радиационных лучей получится правильно подобрать методы защиты от гамма-излучения, чтобы обезопасить пребывание людей вблизи с источником радиации.

Читайте также: