Деформационный шов в фундаментах сп

Обновлено: 06.05.2024

9.23 В конструкциях зданий и сооружений, испытывающих температурные и влажностные воздействия, следует предусматривать их разрезку температурно-усадочными швами, расстояния между которыми назначают в зависимости от температурных условий и конструктивных особенностей сооружения.

При неравномерной осадке фундаментов следует предусматривать разделение конструкций осадочными швами.

9.24 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов следует устанавливать расчетом.

Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 9.2, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40ºС, относительной влажности воздуха 60% и выше и высоте колонн 3 м.

1. Для железобетонных конструкций (поз. 2), расчетная температура внутри которых не превышает 50ºС, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1ºС увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60 %.

Для железобетонных каркасных зданий (поз. 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м – на 20 %, 7 м – на 60% и 9 м – на 100%. Высоту колонн определяют: для одноэтажных зданий – от верха фундамента до низа подкрановых балок, а при их отсутствии – до низа ферм или балок покрытия; для многоэтажных зданий – от верха фундамента до низа балок первого этажа.

3. Для железобетонных каркасных зданий (поз. 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри объемов 70, 120, 300, 500 и 1000ºС уменьшают соответственно на 20, 40, 60, 70 и 90%.

9.25 Ширина температурно-усадочного шва b в зависимости от расстояния между швами l должна определяться по формуле

Относительное удлинение оси элемента εt следует вычислять в зависимости от вида конструкции и характера нагрева по указаниям 6.22-6.25.

Ширину температурно-усадочного шва, вычисленную по формуле (9.4), следует увеличить на 30%, если шов заполняется асбесто-вермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.4, а).

Температурно-усадочные швы в бетонных и железобетонных конструкциях следует принимать шириной не менее 20 мм.

Когда давление в рабочем пространстве теплового агрегата не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус должен устанавливаться насухо без раствора. Между брусом и менее нагретой поверхностью шов необходимо заполнить легко деформируемым теплоизоляционным материалом (рисунок 9.4, б).

В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор (рисунок 9.4, в).


496 × 214 пикс.   Открыть в новом окне

а - шов, заполненный шнуровым асбестом; б - то же, с бетонным бруском; в - то же, с металлическим компенсатором; 1 - шнуровой асбест, смоченный в глиняном растворе; 2 - бетонный брусок; 3 - компенсатор; 4 - стальной стержень диаметром 6 мм.

9.26 Для организованного развития усадочных трещин в бетоне со стороны рабочего пространства теплового агрегата должны предусматриваться усадочные швы. Швы шириной 2-3 мм и глубиной, равной 1/10 высоты сечения, но не менее 20 мм, следует располагать через 60-90 см в двух взаимно перпендикулярных направлениях (рисунок 9.5, б).

устройством компенсационных швов в более нагретой сжатой зоне бетона (рисунок 9.5, а). Компенсационные швы шириной 2-5 мм следует располагать через 60-90 см на глубину не более 0,5 высоты сечения элемента в направлении, перпендикулярном к действию сжимающих усилий от воздействия температуры;

повышением температуры растянутой арматуры, расположенной у менее нагретой грани бетона, посредством увеличения толщины защитного слоя бетона или устройством наружной теплоизоляции.


378 × 235 пикс.   Открыть в новом окне

а- компенсационные; б - усадочные; 1 - компенсационный шов шириной 2-÷5 мм; 2 - усадочный шов глубиной 0,1hf и шириной 2-3 мм

Отдельные конструктивные требования

9.28 В железобетонных конструкциях из жаростойкого бетона для восприятия растягивающих усилий, как правило, следует устанавливать арматуру у менее нагретой грани сечения элемента.

Если в конструкциях от нагрузки растягивающие усилия возникают со стороны более нагретой грани сечения элемента, то арматура может воспринимать растягивающие усилия при температуре, не превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. таблицу 5.11).

Для снижения температуры арматуры допускается увеличивать толщину защитного слоя бетона у более нагретой грани сечения элемента до шести диаметров продольной арматуры или предусматривать теплоизоляцию из легкого жаростойкого бетона.

На границе бетонов разных видов следует устанавливать конструктивную арматуру из жаростойкой стали диаметром не более 4 мм, которая должна быть приварена к хомутам (рисунок 9.6).

Температура нагрева конструктивной арматуры не должна превышать предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10.


634 × 173 пикс.   Открыть в новом окне

1 - тяжелый жаростойкий бетон; 2 - теплоизоляционный слой из легкого жаростойкого бетона; 3 - сетка из жаростойкой стали диаметром 4 мм; 4 - продольная рабочая арматура

Рисунок 9.6 - Конструкция изгибаемого железобетонного элемента, нагреваемого до температуры более 400°С со стороны растянутой зоны

9.29 Несущие и ненесущие конструкции тепловых агрегатов следует выполнять из сборных однослойных или многослойных элементов. Сборные ограждающие конструкции, как правило, выполняются из блоков, плит и панелей.

В двухслойных панелях, проектируемых из разных видов жаростойкого бетона, теплоизоляционный легкий жаростойкий бетон может предусматриваться как со стороны рабочего пространства, так и с наружной стороны теплового агрегата.

Для улучшения совместной работы отдельных слоев бетона необходимо предусматривать установку конструктивной арматуры или анкеров. Конструктивная арматура должна заходить в каждый слой бетона на глубину не менее 50 мм. Если в зоне сопряжения отдельных слоев бетона температура превышает предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10, то для усиления связи между слоями допускается устраивать выступы или бетонные шпонки.

В ребристых панелях плиту и ребра следует выполнять из тяжелого или легкого конструкционного жаростойкого бетона (см. рисунок 9.5, б). В местах сопряжения ребер с плитой необходимо устраивать вуты. Между ребрами с менее нагретой стороны следует располагать тепловую изоляцию из легкого жаростойкого бетона или из теплоизоляционных материалов. В ребрах панели следует предусматривать арматурные каркасы, которые должны быть заведены в бетон плиты не менее чем на 50 мм. При необходимости снижения темпе-ратуры рабочей арматуры, устанавливаемой в ребрах, ребра могут выступать за наружную поверхность тепловой изоляции. Плиту панели следует армировать конструктивной сварной сеткой из арматуры диаметром не более 4 мм с расстояниями между стержнями не менее 100 мм.

Температура нагрева сварной сетки не должна превышать предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10. Если температура нагрева плиты панели превышает предельно допустимую температуру применения конструктивной арматуры, допускается плиту не армировать.

Для ненесущих облегченных ограждающих конструкций тепловых агрегатов следует предусматривать легкие жаростойкие бетоны и эффективные теплоизоляционные материалы.

9.30 В двухслойных панелях на металлическом листе легкий жаростойкий бетон следует крепить анкерами, приваренными к листу (рисунок 9.7, а). Анкеры должны приниматься диаметром 6÷10 мм или полосы 3х20 мм. Длина анкера должна быть не менее половины толщины футеровки, а расстояние между ними – не более 250 мм. Металлический лист толщиной не менее 3 мм должен иметь отогнутые края или приваренные «на перо» по контуру уголки.

В панелях с окаймляющим каркасом прямоугольного или трапециевидного сечения ребра должны предусматриваться из тяжелого или легкого конструкционного жаростойкого бетона, а пространство между ребрами на всю толщину следует заполнять теплоизоляционным легким жаростойким бетоном. Ребра следует армировать плоскими каркасами, расположенными с менее нагретой стороны (рисунок 9.7, б).

В панелях с окаймляющим арматурным каркасом сварной каркас следует располагать по периметру панели у менее нагретой стороны (рисунок 9.7, в).

Крепление панелей к каркасу должно осуществляться на болтах или на сварке так, чтобы панели могли свободно перемещаться при нагреве.

В конструкциях тепловых агрегатов из монолитного железобетона со стороны рабочего пространства в углах сопряжения стен, а также стен с покрытием и перекрытием следует предусматривать вуты.

При температуре рабочего пространства теплового агрегата свыше 800ºС ограждающую конструкцию с целью увеличения ее термического сопротивления следует выполнять многослойной, с включением в ее состав слоев из эффективной теплоизоляции (рисунок 9.7, г).

Многослойная несущая или самонесущая конструкция со стороны рабочего пространства должна иметь футеровочную плиту из жаростойкого бетона, а с ненагреваемой стороны – несущее основание в виде железобетонной плиты или металлического листа с окаймляющими уголками, а между ними - слой теплоизоляции. Волокнистые огнеупорные материалы следует применять в температурных зонах сечения конструкции, где нельзя применять более дешевых и менее дефицитные материалы, например, плиты или маты из минеральной ваты.

474 × 558 пикс.   Открыть в новом окне

а - двухслойная панель на металлическом листе; б - панель с окаймляющим каркасом из тяжелого жаростойкого бетона; в - панель с окаймляющим арматурным каркасом; г - панель на

металлическом листе со стальными анкерами и эффективной теплоизоляцией; 1 – уголок жесткости панели; 2 - металлический лист; 3 - анкер; 4 - легкий жаростойкий бетон с D1100 и менее; 5 - легкий жаростойкий бетон с D1200 и более; 6 - окаймляющий каркас из тяжелого жаростойкого бетона; 7 - арматурный каркас; 8 - эффективная теплоизоляция; 9 - усадочный шов; 10 – шайба

5.15.1 Для цементации усадочных, температурных, деформационных и конструкционных швов следует применять цемент не ниже марки (класса) М 400 (ЦЕМ I 32,5). При цементации швов с раскрытием менее 0,5 мм используют специальные цементосодержащие растворы низкой вязкости. До начала работ по цементации производится промывка и гидравлическое опробование шва для определения его пропускной способности и герметичности карты (шва).

9.4.5 Работы по кладке двухслойных навесных стен должны выполняться с перекрытия и средств подмащивания в следующей последовательности.

Возведение стены начинается с кладки наружного облицовочного и внутреннего слоев одновременно.

По мере выполнения кладки с указанным в проекте шагом в уширенные растворные швы (16 мм) укладываются в раствор арматурные сетки-связи, соединяющие оба слоя кладки.

С таким же шагом по высоте осуществляется крепление кладки к несущим внутренним конструкциям (стенам или пилонам) с помощью предусмотренных проектом анкеров.

Кладка навесных стен каждого этажа завершается устройством горизонтального деформационного шва толщиной 30 мм под плитой перекрытия (ригелем, балкой).

9.5.3 Горизонтальные и вертикальные деформационно-температурные швы и расстояния между ними в лицевом слое трехслойных стен должны быть предусмотрены проектом.

9.18 Приемка каменных конструкций

9.18.1 Приемку выполненных работ по возведению каменных конструкций необходимо производить до оштукатуривания поверхностей.

9.18.2 На элементы каменных конструкций, скрытых в процессе производства строительно-монтажных работе, в том числе:

места опирания ферм, прогонов, балок, плит перекрытий на стены, столбы и пилястры и их заделка в кладке;

закрепление в кладке сборных железобетонных изделий: карнизов, балконов и других консольных конструкций;

закладные детали и их антикоррозионная защита;

уложенная в каменные конструкции арматура;

осадочные деформационные швы, антисейсмические швы;

На эти работы составляются акты скрытых работ, подписанные представителями заказчика, проектной и подрядной строительной организацией, удостоверяющими их соответствие проекту и нормативной документации.

9.18.3 При приемке законченных работ по возведению каменных конструкций необходимо проверять:

правильность перевязки швов, их толщину и заполнение, а также горизонтальность рядов и вертикальность углов кладки;

правильность устройства деформационных швов;

правильность устройства дымовых и вентиляционных каналов в стенах;

качество поверхностей фасадных неоштукатуриваемых стен из кирпича;

качество фасадных поверхностей, облицованных керамическими, бетонными и другими видами камней и плит;

СП 21.13330.2012 ЗДАНИЯ И СООРУЖЕНИЯ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ И ПРОСАДОЧНЫХ ГРУНТАХ

Актуализированная редакция СНиП 2.01.09-91

5.4 Принципы проектирования зданий и сооружений на подрабатываемых территориях

5.4.3 Здания и сооружения сложной формы в плане разделяются деформационными швами на отсеки. Высоту зданий и сооружений в пределах отсека следует принимать одинаковой, а длину отсеков — по расчету в зависимости от расчетных величин деформаций земной поверхности, физико-механических свойств грунтов основания, принятой конструктивной схемы, технологических требований.

Деформационные швы между отсеками должны обеспечивать свободный наклон или поворот отсека при деформациях основания. Размер деформационного шва следует рассчитывать согласно указаниям 5.5.14.

Деформационные швы должны разделять смежные отсеки зданий и сооружений по всей высоте, включая кровлю и фундаменты.

5.5.14 Размеры деформационного шва между отсеками должны удовлетворять условиям:

на уровне подошвы фундамента аd

L0 — расстояние между центрами смежных отсеков бескаркасных зданий (сооружений) и каркасных зданий с фундаментами, соединенными связями-распорками или иными конструктивными решениями фундаментов в направлении, перпендикулярном деформационному шву, или расстояние между центрами блоков жесткости каркасных зданий с несвязанными фундаментами (рисунок 5.1);

Н — расстояние от подошвы фундамента до верха стены (в отсеке с меньшей высотой);

q — взаимное расчетное угловое перемещение смежных отсеков от деформаций основания, определяемое по формулам:

для площадок с плавными деформациями земной поверхности

(5.6)

здесь R — радиус кривизны вогнутости земной поверхности;

для площадок, где проявляются сосредоточенные деформации (уступы)

(5.7)

здесь L’ — длина меньшего отсека; значение L’ не должно превышать расстояния между уступами.

 Схемы для определения размеров деформационного шва между отсеками

Рисунок 5.1 — Схемы для определения размеров деформационного шва между отсеками

Размер деформационного шва между отсеками следует принимать не менее 20 см.

6.4 Основные положения по проектированию

6.4.5 Здания и сооружения сложной формы в плане, проектируемые по 6.4.1, б и 6.4.1, в, необходимо разделять деформационными швами на отсеки прямоугольной или близкой к ней, простой формы. Высоту зданий и сооружений в пределах отсека следует принимать одинаковой, а длину отсеков — по расчету в зависимости от расчетных величин просадочных деформаций, физико-механических свойств грунтов основания, принятой конструктивной схемы, технологических требований по эксплуатации зданий и сооружений.

Деформационные швы между отсеками должны разделять смежные отсеки зданий и сооружений по всей высоте, включая кровлю и фундаменты, обеспечивая свободный наклон или поворот отсека при деформациях основания. Ширину деформационного шва следует рассчитывать согласно указаниям 6.4.6 в зависимости от высоты и длины отсека и особенностей грунтовых условий.

Примечание — На просадочных грунтах с I типом грунтовых условий фундаменты под несущие стены и колонны у деформационных швов при разностях нагрузок на них не более чем в 1,2 раза допускается выполнять сплошными без их разрезки.

6.4.6 Ширину деформационного шва между отсеками зданий и сооружений с жесткой конструктивной схемой при проектировании на основе комплекса мероприятий следует определять по формулам:

на уровне подошвы фундамента при rL

(6.1)

на уровне подошвы фундамента при L/2 < r < L

(6.2)

на уровне карниза

(6.3)

где eи — значение относительной горизонтальной деформации, определяемое по формуле (И.21) приложения И;

L — длина отсека здания;

r — расчетная длина криволинейного участка просадки грунта от собственного веса, определяемая по формуле (И.14) приложения И;

H — высота здания от подошвы фундамента до верха стены;

ssl,g — величина просадки грунта от его собственного веса;

gu — коэффициент условий работы, учитывающий совместную работу здания с основанием, принимаемый равным gи = (r/L) 2 при r < Lи gи = 1 при r ³ L.

Ширина деформационного шва между отсеками должна быть не менее:

при 30 > H > 10 ad определяется интерполяцией.

6.4.7 Шахты лифтов следует проектировать с учетом возможных наклонов и горизонтальных перемещений, вызываемых просадками грунтов от их собственного веса, возникающих на площадках с II типом грунтовых условий.

В случаях, когда расчетные отклонения стен шахт от вертикальной плоскости превышают допустимые, установленные государственными стандартами для лифтов, проектами следует предусматривать возможность регулирования горизонтального положения лифта в шахте, в связи с чем размеры ее в плане должны быть увеличены на 0,5 ширины деформационного шва, вычисляемой по формуле (6.3).

6.4.8 Примыкающие к зданиям инженерные сооружения следует отделять от зданий деформационными швами, ширина которых определяется согласно указаниям, приведенным в 6.4.5 и 6.4.6.

6.4.28 При проектировании зданий и сооружений в необходимых случаях следует учитывать наряду с рихтовкой подкрановых путей, лифтовых шахт и других конструкций, возможность выравнивания отдельных конструкций, отсеков, отрезанных осадочными швами, и в целом зданий и сооружений в процессе их эксплуатации путем подъема их домкратами или наоборот опускания путем частичного выбуривания грунта под фундаментом, либо регулируемым замачиванием просадочных грунтов под всем зданием или сооружением. В связи с этим следует выполнять соответствующие дополнительные расчеты конструкций на неравномерные деформации основания и в стадии выравнивания.

Расчетом на выравнивание следует также проверять несущую способность и устойчивость фундаментно-подвальной части зданий, воспринимающих сосредоточенную нагрузку от выравнивающих устройств (домкратов, включая проверку на устойчивость основания при передаче на него давления от выравнивающих устройств).

Примечание — Расчеты на воздействия просадок грунтов конструкций зданий и сооружений III уровня ответственности, а также объектов массового строительства, по которым имеется достаточный положительный опыт строительства и эксплуатации в местных грунтовых условиях допускается не производить.

Б.4 К конструктивным мерам защиты эксплуатируемых зданий и сооружений относятся:

а) разделение зданий и сооружений деформационными швами;

б) усиление отдельных конструктивных элементов или сооружения в целом тяжами или железобетонными поясами;

в) установка связей-распорок;

г) выравнивание зданий и сооружений путем поддомкрачивания и др.

В.13 Предельные длину и ширину отсека каркасного здания следует определять в зависимости от расчетных величин деформаций земной поверхности.

Деформационные швы между отсеками следует проектировать в виде парных рам или шарнирно-подвижного опирания пролетных конструкций и перекрывать их компенсаторами с заделкой эластичным заполнителем (пороизолом, поролоном, макропористой резиной и т.п.).

В.17 Для защиты покрытий каркасных зданий от попадания воды при повреждениях кровли вследствие неравномерных деформаций основания в местах примыкания перекрытия к торцовым и продольным (при внутреннем водостоке) стенам следует устраивать в местах примыкания покрытий соседних пролетов компенсаторы (с теплоизоляцией на деформационных швах), а также проклеивать места установки компенсаторов и швы между плитами покрытия внутри гидроизоляционного ковра дополнительными полосами рубероида шириной 1 м.

B.20 Жесткие полы по грунту (бетонные, ксилолитовые и др.) необходимо проектировать с разрезкой их на карты со сторонами не более 6 м. Ширину шва между картами следует определять по формуле (5.4), в которой за величину L0 следует принимать расстояние между центрами смежных карт в рассматриваемом направлении. Швы между картами следует заделывать эластичным заполнителем (битумной мастикой, пороизоловым жгутом и др.). Допускается использовать бетонный армированный пол в качестве связей-распорок. В этом случае его не следует разрезать на карты.

B.23 В зданиях с мостовыми кранами следует применять разрезные подкрановые балки.

В местах разделения здания на отсеки следует предусматривать консольное опирание подкрановых балок или устройство специальных балок-компенсаторов, деформационную способность которых следует определять в зависимости от ожидаемой величины деформационного шва.

Г.5 Деформационные швы в бескаркасных зданиях следует предусматривать в виде парных поперечных стен. Толщина стен должна отвечать теплотехническим требованиям, предъявляемым к зданиям в зависимости от расчетной температуры наружного воздуха.

Г.6 В крупнопанельных зданиях стыки между элементами следует выполнять одним из следующих способов:

в виде шпонок со сваркой арматурных выпусков и замоноличиванием шпонок бетоном;

сваркой стальных закладных деталей, приваренных к рабочей арматуре;

соединением скобами петлевых выпусков с последующим замоноличиванием.

Сечение соединительных элементов в стыках между элементами стен следует определять расчетом.

В горизонтальных стыках панелей следует предусматривать швы из цементного раствора марки не ниже 100.

Стальные закладные детали и соединительные элементы в стыках должны быть защищены от коррозии.

Д.3 Транспортерные галереи следует предусматривать разрезной конструкции со швами на опорах, при этом должна обеспечиваться возможность рихтовки галереи на опорах в горизонтальной плоскости по нормали к ее продольной оси.

Опирание транспортерной галереи на здание следует проектировать подвижным. Деформационные швы должны быть перекрыты нащельниками.

Д.5 Протяженные подземные сооружения (тоннели, каналы, переходы и т.п.) следует проектировать:

в продольном направлении — по податливым схемам с разрезкой деформационными швами на отдельные жесткие отсеки;

в поперечном направлении — по податливым и жестким конструктивным схемам.

Д.6 Длину отсеков протяженных подземных сооружений следует принимать в зависимости от несущей способности конструкции, величин нагрузок и воздействий от деформаций основания.

Деформационные швы между смежными отсеками необходимо защищать от попадания подземных вод с применением упругих заполнений, компенсационных вставок и т.п.

ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Soil bases of buildings and structures

Дата введения 2017-07-01

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) - институт АО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Изменения N 1, 2, 3, 4 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2019; М.: Стандартинформ, 2020; М.: ФГБУ "РСТ", 2022

Введение

Настоящий документ содержит указания по проектированию оснований зданий и сооружений, в том числе подземных, возводимых в различных природных условиях, для различных видов строительства.

Разработаны НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство" (д-р техн. наук , д-р техн. наук Е.А.Сорочан, канд. техн. наук И.В.Колыбин - руководители темы; д-р техн. наук Б.В.Бахолдин, д-р техн. наук А.А.Григорян, д-р техн. наук П.А.Коновалов, д-р техн. наук В.И.Крутов, д-р техн. наук Н.С.Никифорова, д-р техн. наук Л.Р.Ставницер, д-р техн. наук В.И.Шейнин; канд. техн. наук А.Г.Алексеев, канд. техн. наук Г.И.Бондаренко, канд. техн. наук В.Г.Буданов, канд. техн. наук A.M.Дзагов, канд. техн. наук Ф.Ф.Зехниев, канд. техн. наук М.Н.Ибрагимов, канд. техн. наук О.И.Игнатова, канд. техн. наук О.Н.Исаев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.К.Когай, канд. техн. наук М.М.Кузнецов, канд. техн. наук И.Г.Ладыженский, канд. техн. наук , канд. техн. наук Д.Е.Разводовский, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук В.Г.Федоровский, канд. техн. наук М.Л.Холмянский, канд. техн. наук А.В.Шапошников, канд. техн. наук Р.Ф.Шарафутдинов, канд. техн. наук О.А.Шулятьев; инж. Д.А.Внуков, инж. А.Б.Мещанский, инж. О.А.Мозгачева, инж. А.Б.Патрикеев, инж. А.И.Харичкин).

Изменение N 1 к СП 22.13330.2016 разработано АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководитель темы - канд. техн. наук И.В.Колыбин; исполнители - канд. техн. наук Буданов, канд. техн. наук В.А.Ковалев, канд. техн. наук И.Г.Ладыженский, канд. техн. наук Д.Е.Разводовский, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев; инж. А.Б.Патрикеев).

Изменение N 2 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук А.Г.Алексеев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук А.В.Шапошников, инж. А.Б.Патрикеев).

Изменение N 3 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук В.А.Ковалев, канд. техн. наук М.Л.Холмянский, канд. техн. наук Р.Ф.Шарафутдинов, А.Б.Патрикеев).

Изменение N 4 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; д-р техн. наук В.И.Шейнин; канд. техн. наук В.А.Ковалев, канд. техн. наук А.Г.Алексеев, канд. техн. наук О.Н.Исаев, канд. техн. наук И.К.Попсуенко, канд. техн. наук А.В.Скориков, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев, А.Б.Патрикеев, В.С.Поспехов).

1 Область применения

Настоящий свод правил распространяется на проектирование оснований вновь строящихся и реконструируемых зданий и сооружений в котлованах, траншеях и открытых выработках, а также на подземные сооружения, возводимые закрытым способом, в части оценки их влияния на окружающую застройку.

Примечание - Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения, в том числе устраиваемые закрытым способом.

Настоящий свод правил не распространяется на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем своде правил приведены ссылки на следующие документы:

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12248.1-2020 Грунты. Определение характеристик прочности методом одноплоскостного среза

ГОСТ 12248.2-2020 Грунты. Определение характеристик прочности методом одноосного сжатия

ГОСТ 12248.3-2020 Грунты. Определение характеристик прочности и деформируемости методом трехосного сжатия

ГОСТ 12248.4-2020 Грунты. Определение характеристик деформируемости методом компрессионного сжатия

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276.1-2020 Грунты. Методы испытания штампом

ГОСТ 20276.2-2020 Грунты. Метод испытания радиальным прессиометром

ГОСТ 20276.4-2020 Грунты. Метод среза целиков грунта

ГОСТ 20276.5-2020 Грунты. Метод вращательного среза

ГОСТ 20276.6-2020 Грунты. Метод испытания лопастным прессиометром

ГОСТ 20276.7-2020 Грунты. Метод испытания прессиометром с секторным приложением нагрузки

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 21153.2-84 Породы горные. Методы определения предела прочности при одноосном сжатии

ГОСТ 23740-2016 Грунты. Методы определения содержания органических веществ

ГОСТ 24846-2019 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 24847-2017 Грунты. Методы определения глубины сезонного промерзания

ГОСТ 25584-2016 Грунты. Методы лабораторного определения коэффициента фильтрации

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 30416-2020 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-2019 Грунты. Полевые испытания. Общие положения

ГОСТ EN 826-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения характеристик сжатия

ГОСТ EN 12087-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения водопоглощения при длительном погружении

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"

СП 15.13330.2020 "СНиП II-22-81* Каменные и армокаменные конструкции"

СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)

СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты" (с изменениями N 1, N 2, N 3)

СП 25.13330.2020 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"

СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменениями N 1, N 2)

СП 31.13330.2012 "СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения" (с изменениями N 1, N 2, N 3, N 4, N 5)

СП 32.13330.2018 "СНиП 2.04.03-85 Канализация. Наружные сети и сооружения" (с изменением N 1)

СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты" (с изменениями N 1, N 2)

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения" (с изменением N 1)

СП 48.13330.2019 "СНиП 12-01-2004 Организация строительства"

СП 63.13330.2018 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменением N 1)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3, N 4)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия" (с изменением N 1)

СП 100.13330.2016 "СНиП 2.06.03-85 Мелиоративные системы и сооружения" (с изменением N 1)

СП 103.13330.2012 "СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод"

СП 116.13330.2012 "СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения" (с изменением N 1)

ЗДАНИЯ И СООРУЖЕНИЯ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ И ПРОСАДОЧНЫХ ГРУНТАХ

Buildings and structures on undermined territories and slumping soils

Дата введения 2013-01-01

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им. Н.М.Герсеванова ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 29 декабря 2011 г. N 624 и введен в действие с 1 января 2013 г.

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет.

Изменение N 1 внесено изготовителем базы данных по тексту М.: Стандартинформ, 2017 год

Введение

Настоящий свод правил устанавливает требования к проектированию зданий и сооружений на подрабатываемых территориях и просадочных грунтах.

Актуализация раздела "Здания и сооружения на подрабатываемых территориях" выполнена НИИОСП им. Н.М.Герсеванова (д-р техн. наук В.П.Петрухин, канд. техн. наук О.А.Шулятьев, д-р техн. наук В.И.Шейнин - руководители темы; инж. Б.Н.Астраханов, кандидаты техн. наук A.M.Дзагов, О.Н.Исаев, инж. А.Н.Пушилин, кандидаты техн. наук А.Л.Смилянский, М.Л.Холмянский, Б.С.Цетлин (ЦНИИСК им. В.А.Кучеренко) при участии докторов техн. наук М.А.Иофиса (ИПКОН РАН) и И.В.Баклашова (МГГУ).

Актуализация раздела "Здания и сооружения на просадочных грунтах" выполнена НИИОСП им. Н.М.Герсеванова (д-р техн. наук В.П.Петрухин, канд. техн. наук О.А.Шулятьев, д-р техн. наук В.И.Крутов - руководители темы; кандидаты техн. наук В.К.Когай, И.К.Попсуенко, A.M.Дзагов, В.А.Ковалев), Б.С.Цетлин (ЦНИИСК им. В.А.Кучеренко).

Изменение N 1 к СП 21.13330.2012 разработано авторским коллективом НИИОСП им.Н.М.Герсеванова (руководители темы - канд. техн. наук И.В.Колыбин, канд. техн. наук О.А.Шулятьев, канд. техн. наук Д.Е.Разводовский, д-р техн. наук В.И.Крутов, д-р техн. наук В.И.Шейнин; исполнители - канд. техн. наук В.К.Когай, канд. техн. наук И.К.Попсуенко, канд. техн. наук A.M.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук О.Н.Исаев, канд. техн. наук М.Л.Холмянский, А.Н.Пушилин).

1 Область применения

Настоящий свод правил устанавливает требования к проектированию зданий и сооружений на подрабатываемых территориях и просадочных грунтах.

Требования настоящего свода правил не распространяются на проектирование зданий и сооружений в сейсмических районах, а также на проектирование гидротехнических сооружений, дорог, аэродромных покрытий.

2 Нормативные ссылки

В настоящем своде правил приведены нормативные ссылки на следующие документы:

ГОСТ 23161-2012 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 30.13330.2016 "СНиП 2.04.01-85* Внутренний водопровод и канализация зданий"

СП 31.13330.2012 "СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения" (с изменениями N 1, N 2)

СП 32.13330.2012 "СНиП 2.04.03-83 Канализация. Наружные сети и сооружения" (с изменением N 1)

СП 42.13330.2016 "СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и сельских поселений"

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 104.13330.2016 "СНиП 2.06.15-85 Инженерная защита территорий от затопления и подтопления"

СП 116.13330.2012 "СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения"

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 выработка горная (mine opening): Полость в земной коре, образуемая в результате осуществления горных работ с целью разведки и добычи полезных ископаемых, проведения инженерно-геологических изысканий и строительства подземных сооружений;

3.2 грунт (soil): Обобщенное наименование всех видов горных пород, являющихся объектом инженерно-строительной деятельности человека;

3.3 горизонтальное перемещение (horizontal displacement), : Горизонтальное перемещение грунта или сооружения, возникающее при значительных неравномерных просадках грунта от его собственного веса на участках изменения просадок от минимальных до максимальных значений;

3.4 деформации земной поверхности вертикальные (vertical deformations of land surface): Деформации земной поверхности в вертикальной плоскости, вызванные неравномерностью вертикальных перемещений;

3.5 деформации основания сооружений допустимые (admissible structure base deformations): Деформации, способные вызвать такие повреждения в сооружениях, при которых для дальнейшей эксплуатации их по прямому назначению достаточно проведения текущих наладочных и ремонтных работ;

3.6 деформации основания сооружений предельные (ultimate structure base deformations/limit state of fitness): Деформации, превышение которых может вызвать аварийное состояние сооружений или опасность для жизни людей;

3.7 деформации и сдвижения вероятные (virtual deformations and subsidence): Величины деформаций и сдвижений, определяемые в условиях, когда отсутствуют календарные планы развития горных работ;

3.8 деформации и сдвижения ожидаемые (expected deformations and subsidence): Величины сдвижений и деформаций, определяемые в условиях, когда имеются календарные планы развития горных работ и известны необходимые для расчетов исходные данные;

3.9 дополнительная осадка подстилающего слоя (additional settlement of the underlaying stratum), : Вертикальная деформация слоя грунта, залегающего ниже просадочной толщи, происходящая от: равномерно распределенной нагрузки от здания или сооружения (включая нагрузки на полы по грунту); повышения собственного веса просадочного грунта при повышении его плотности, влажности; выполнения свай, устройства планировочной насыпи и т.п.;

3.10 забой (working face): Место, где происходит разработка грунта открытым или закрытым (подземным) способом, перемещающееся в процессе производства работ;

3.11 закрытый способ строительства (trenchless method): Способ строительства подземных сооружений без вскрытия земной поверхности над ними;

3.12 зона влияния подработки (area of undermining influence): Область, за пределами которой негативные воздействия на надежность и эксплуатационную пригодность объектов окружающей застройки пренебрежимо малы;

3.13 коэффициент жесткости основания (base rigidity index), : Характеристика сжимаемости основания, представляющая собой отношение равномерно распределенной нагрузки на основание к его осадке;

3.14 кривизна мульды сдвижения земной поверхности (curvature of subsidence trough): Отношение разности наклонов двух соседних интервалов мульды к полусумме длин этих интервалов;

3.15 мульда сдвижения земной поверхности (surface subsidence trough): Участок земной поверхности, подвергшийся сдвижению в результате подработки территории;

3.16 наклоны интервалов в мульде сдвижения (inclination of subsidence trough intervals): Отношение разности оседаний двух соседних точек мульды к расстоянию между ними;

3.17 начальная просадочная влажность (initial slumping moisture), : Минимальная влажность, при которой проявляются просадочные свойства грунта при заданном напряженном состоянии;

3.18 начальное просадочное давление (initial slumping pressure), : Минимальное давление, при котором проявляются просадочные свойства грунта при его полном водонасыщении;

3.19 обделка (lining): Постоянная конструкция, закрепляющая выработку и образующая ее внутреннюю поверхность;

3.20 подрабатываемая застройка (undermined buildings): Существующие здания, сооружения и инженерные коммуникации, расположенные на подрабатываемых территориях;

3.21 оседание земной поверхности (surface subsidence): Вертикальная составляющая вектора сдвижения точки земной поверхности в мульде сдвижения;

3.22 основание сооружения (structure base): Массив грунта, взаимодействующий с сооружением;

3.23 относительная просадочность (relative slumping ability), : Отношение изменения толщины слоя грунта без возможности бокового расширения до и после повышения его влажности при заданном давлении к его первоначальной толщине в природном залегании;

3.24 относительные горизонтальные деформации растяжения или сжатия земной поверхности (массива горных пород) (horizontal tensile or compressive strain): Деформации земной поверхности (массива горных пород) в горизонтальной плоскости, вызванные неравномерностью горизонтальных сдвижений в мульде сдвижения (массиве горных пород);

3.25 подземное сооружение или подземная часть сооружения (subsurface structure): Сооружение или часть сооружения, расположенная ниже уровня поверхности земли;

3.26 подработка объекта (underworking): Устройство закрытых подземных горных выработок с целью выемки полезных ископаемых или строительства подземных сооружений различного назначения, оказывающих влияние на объект;

3.27 подрабатываемая территория (undermining area): Территория, на которой в результате проведения подземных горных работ могут возникнуть неравномерные оседания или смещения грунта в основании зданий или сооружений;

3.28 провал (mining damage): Участок земной поверхности, подвергшийся обрушению под влиянием подземных горных выработок;

3.29 просадочный грунт (slumping soil): Преимущественно структурно-неустойчивый, глинистый (лессовый) грунт, в котором при повышении влажности выше определенного уровня происходит потеря его прочности и под воздействием внешней нагрузки и (или) собственного веса происходит его дополнительное уплотнение - просадка грунта;

3.30 просадочная толща (slumping stratum), : Слой грунта от природной поверхности или уровня планировки до кровли непросадочного грунта;

3.31 сдвижение земной поверхности (массива горных пород) (land movement): Перемещение и деформирование земной поверхности (массива горных пород) вследствие нарушения его естественного равновесия при ведении горных работ;

3.32 скашивание в точках мульды сдвижения (skewing): Величина изменения прямого (до деформации) угла квадрата, стороны которого параллельны и перпендикулярны линии простирания пласта. Различают скашивание в направлении простирания (вкрест простирания) пласта и в заданном направлении;

3.33 скручивание в точках мульды сдвижения (twisting): Отношение разности наклонов параллельных до деформаций границ квадратной площадки к ее стороне. При расчете скручивание в направлении простирания (вкрест простирания) определяется как вторая производная функции оседаний по перемещениям и (где - расстояние по направлению простирания от рассматриваемой точки до главного сечения мульды вкрест простирания; - расстояние по направлению вкрест простирания от рассматриваемой точки до главного сечения мульды по простиранию пласта).

Читайте также: