Боковое давление бетонной смеси на стенки опалубки зависит от скорости бетонирования

Обновлено: 24.04.2024

При расчетах опалубки первостепенной задачей является определение нагрузки, которая будет оказываться на её комплекс. Получение расчетных данных происходит с учетом множества факторов, среди которых: вес комплектующих опалубки, вес бетонной смеси, масса армирующих элементов, а также суммарный вес лесов и рабочих, задействованных при заливке. Кроме того, для обеспечения устойчивости конструкции и расчета требуемого количества подпорных элементов необходимо вычислить показатель ветровой нагрузки. В целом нагрузку, испытываемую опалубкой подразделяют на вертикальную и горизонтальную.

Расчет максимального бокового давления бетона на стенки опалубки

Вертикальная нагрузка

Под данным понятием подразумевается суммарная нагрузка, оказываемая на опорные элементы вертикальных опалубочных систем со стороны конструкционных элементов, заливочной смеси и других рабочих факторов. К расчетным компонентам вертикальной нагрузки относят:

  • Суммарный вес комплекса опалубочных элементов. Вес каждой комплектующей части указан в технической документации. При использовании опалубки из дерева масса высчитывается по константам, утвержденным в СНИП: 800 кг/куб.м. – для дерева лиственных пород, 600 кг/ куб.м. – для хвойных сортов древесины.
  • Масса армирующих элементов. Указывается в проектных данных или вычисляется по константе для ж/б конструкций, равной 100 кг/м3 (при отсутствии точных данных).
  • Нагрузка, оказываемая транспортом и живой рабочей силы. Номенклатурное значение данного показателя может отличаться для расчета конкретных элементов опалубки или их комплекса. В данном случае рассматриваются значения в 1,5 кПа и 2,5 кПа соответственно.
  • Масса бетона — высчитывается по фактическому весу компонентов или с использованием номенклатурных данных, для бетонных смесей с щебнем или гравием (2500 кг/ куб.м.).

Горизонтальная нагрузка

К данному комплексу влияющих факторов относятся:

  • нагрузка ветровая, чье значение высчитывается по СНиП 2.01.07-85,
  • показатель давления бетона на стенки опалубки, для расчета которого применяется следующая формула:

Дб = мВ где,

  • Дб – искомый показатель давления бетона кПа,
  • м — объемная масса бетонной смеси, кг/м3,
  • В — высота слоя бетона, м.

Горизонтальна нагрузка на боковую опалубку

Расчет давления бетона на стенки опалубки
Расчет давления бетона на стенки опалубки При расчетах опалубки первостепенной задачей является определение нагрузки, которая будет оказываться на её комплекс. Получение расчетных данных


Как зависит Давление бетона на стенки опалубки от толщины стены

Достаточно часто встречается ситуация, когда встает следующий вопрос на стройке: «У меня толщина стенки 1м, представляешь какое там давление на опалубку. Это тебе не стенка 25см толщиной…»
Хотелось бы немного прояснить ситуацию:
Этим вопросом мы озадачивались в 6 классе средней школы, когда изучали закон Паскаля, который гласит:
«Давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях»
А свежеуложенный бетон при вибрировании – это и есть жидкость.
Гидростатическое давление внутри жидкости на любой глубине не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление: P= ρgh.
Не имеет значения толщина бетоннируемой стены. Давление на опалубку стен будет зависеть только от высоты бетонируемой стены. Т.е. давление бетона на глубине, допустим, 2м на опалубку при толщине стены 1,0м и давление бетона на опалубку при толщине стены 0,25м будет одинаковым! Такое же давление создается на низ (дно) стены.
Приведём пример для наглядности.
Допустим имеем резервуар квадратной формы в плане 1×1м и высотой 10м. Какое давление оказывает вода на основание?
P= ρgh =1000*9.8*10=98кПа=98000Н/кв.метр
Масса воды в резервуаре?
m=(1х1х10)х1000=10000кг=10т
Сила с которой вода давит на дно резервуара? F=mg
F= mg=10000*9.8=98000Н=98кН
ВСЁ СХОДИТСЯ.

А если тот же резервуар, но размерами 0.5м х 1.0м х 10м?

P= ρgh =1000*9.8*10=98кПа=98000Н/кв.метр
m=(1х0.5х10)х1000=50000кг=5т
F=5000*9.8=49000Н=49кН
По Вашему тут косяк? – но ведь если через силу вычислить давление:
P’=F/S=49кН/0.5=98кПа
– такое же давление будет и в случае если резервуар имеет поперечное сечение 10х10см.

Наша задача про свежеуложенный бетон – точно такая же.

Как зависит Давление бетона на стенки опалубки от толщины стены
Как зависит Давление бетона на стенки опалубки от толщины стены Достаточно часто встречается ситуация, когда встает следующий вопрос на стройке: «У меня толщина стенки 1м, представляешь какое там


Боковое давление бетона на опалубку.

Боковое давление может быть уподоблено гидростатическому давлению жидкости с объемным весом. Распространению давления ставится предел глубины, ограниченный слоем бетона, укладываемого в течение 4 час, так как предполагается, что дальше, вследствие уменьшения подвижности бетонной смеси, давление ее на этой точке стабилизируется.

Опыты инженера С. П. Степанова. Опыты производились в условиях строительства гидроузла при уплотнении бетонной смеси без вибрации. Степанов отмечает следующие явления: Приведенные не отражают полностью влияния всех перечисленных выше факторов на величину и характер давления и в настоящее время уже не могут удовлетворять требованиям проектирования опалубки массивных гидросооружений. Ни одна из этих не принимает во внимание явление остаточного давления, в то время как учет его позволяет сильно разгрузить опалубочную конструкцию в целом. С другой стороны, некоторые из показывают заниженные величины максимального давления в сравнении с теми, которые наблюдались при производстве опытов.

Рассматривая можно установить следующее. В первом случае величина давления является функцией объемного веса смеси и толщины ее слоя, ограничиваемого радиусом действия вибратора р. Составленные только для бетона определенного состава и консистенции, достаточно полно отражают характер давления смеси в условиях бетонирования гидротехнических массивов, но не отвечают полностью современным требованиям, будучи предназначены для смеси, уплотняемой вручную. Как результат наблюдений над колоннами малого сечения, естественно, не отражают многих особенностей, характерных для массивного бетона. Как следует из изложенного выше, в настоящее время еще нет рабочих, по которым можно было бы достаточно точно определять боковое давление бетонной смеси с учетом всех факторов, влияющих на его величину и характер. Задачей исследователей является восполнение этого пробела. ТУ предусматривают следующие нагрузки, учет которых обязателен при расчете опалубки. 1. Вертикальные. а) Собственный вес опалубки и поддерживающих конструкций должен определяться по чертежам, при объемном весе древесины 600 кг/м3.

Ввиду незначительной величины собственного веса опалубки гидротехнических массивов в сравнении-с нагрузками от бетона, его можно приближенно принимать. Расчетные комбинаций нагрузок следует назначать в соответствии с указаниями. При производстве бетонных работ в воде приведенный выше перечень нагрузок на опалубку изменяется и дополняется. При бетонировании под водой уменьшаются нагрузки от веса бетона, арматуры, опалубки, уменьшается и боковое давление бетона. В некоторых случаях приходится учитывать нагрузки от удара волны. Запас прочности несущих элементов опалубки (кроме инвентарной) может быть несколько снижен в сравнении с запасом, принимаемым при расчете постоянных и даже временных и вспомогательных сооружений. Проверка прогиба опалубки производится только на основную нагрузку (собственный вес опалубки и боковое давление или вес бетонной смеси). Максимальный прогиб опалубки наружных поверхностей бетона не должен превышать 7400 пролета рассчитываемого элемента. Максимальный прогиб опалубки межблочных граней, а также поверхностей бетона, скрытых обратной засыпкой или водой, принимается равным 1/250 пролета.

Боковое давление бетона на опалубку
Боковое давление бетона на опалубку. Боковое давление может быть уподоблено гидростатическому давлению жидкости с объемным весом. Распространению давления ставится предел глубины, ограниченный


Расчет допустимой нагрузки на опалубку

При устройстве съёмной опалубки своими руками очень важно знать, как правильно рассчитывается нагрузка на опалубку. Совершенно точно выполнить расчет не может ни один специалист, но, тем не менее, попробуем разобраться в этом вопросе.

Какие факторы влияют на прочность опалубки

Следует учитывать, что слишком много факторов влияют на конструкцию щитового ограждения. Например:

  • Расчет прочности материала для сооружения конструкции. Все знают, что не бывает абсолютно одинаковых досок. И их качество зависит от наличия сучков, степени просушки и прочее.
  • Деревянный щит опалубки

Также необходимо уделить внимание такому понятию, как прогиб опалубки. Он разный для определённых частей конструкции. Например, для верхней части, которая находится над уровнем земли, прогиб составляет не более 1/400 длины конструкции. Для нижней части – 1/250 этой длины. Конечно же, таких результатов достичь очень сложно. Поэтому лучше перестраховаться и использовать материал покрепче.

Лучше всего опалубку делать с определённым запасом прочности и ни в коем случае не надеяться на то, что может быть и выдержит.

Монолитный ленточный фундамент – очень ответственная конструкция. Поэтому расчет нагрузки опалубки основывается на определённых требованиях:

  • Надёжность и способность выдержать динамические нагрузки.
  • Простота в сборке и разборке деревянной конструкции.
  • Отсутствие перегиба конструкции.
  • Безопасность при выполнении работ.

Виды нагрузок на опалубку

Все нагрузки на опалубку определяет ГОСТР 52085-2003. Что же следует учитывать при расчете стенок и укреплений щитового ограждения для фундамента?

Заливка смеси в опалубку

В первую очередь вертикальные нагрузки:

  • Непосредственно расчет веса самой опалубки и лесов. Вес одного кубометра лесоматериалов составляет: хвойные породы – 600 кг, лиственные – 800 кг, фанера – 1000 кг.
  • Масса бетонной смеси. Один кубометр тяжёлого бетона весит 2500 кг.
  • Вес арматуры – один кубометр составляет 100 кг.
  • Нагрузки оборудования подачи смеси, её трамбовки считаются равными 2500 Па.

Следующие виды нагрузок, горизонтальные:

  • Ветровые нагрузки определяет СНиП 2.01.07-85.
  • По специальным формулам расчета определают давление свежего бетона.
  • Нагрузки от механизма подачи бетона: если смесь выгружается по лоткам – 4000 Па, из ковша ёмкостью до 0,8 куб. м. – 4000 Па, свыше 0,8 куб. м. – 6000 Па, при подаче с помощью бетононасоса – 8000 Па.
  • Нагрузка при трамбовке бетона – 4000 Па.

Основная нагрузка – это давление бетонной смеси. Так как первоначальный вид бетона – это жидкость, то он оказывает на стенки конструкции гидростатическое давление и зависит от высоты заливаемой смеси. В процессе схватывания бетона давление уменьшается. Таким образом, расчет нагрузки на стенки зависит от скорости схватывания смеси.

Как выбрать материал для опалубки

Следует следить за тем, чтобы поверхность внутри щитового ограждения была как можно ровнее. Особое внимание при выборе леса для щитового ограждения следует уделить его длине и толщине. Расчет длины зависит от размеров траншеи для фундамента. Щиты должны немного выступать за пределы границ фундамента. Так как бетон создаёт достаточно высокое давление на стенки деревянной конструкции, то доски выбирают такой толщины, при которой щиты способны выдержать эту нагрузку. Оптимальной шириной доски для монтажа оградительной конструкции считается – 25–50 мм.

Можно применять лесоматериалы и большей толщины, но, ни в коем случае, нельзя использовать тонкие доски. Конструкция может не выдержать, а исправлять погрешности при заливке фундамента, очень трудоёмкое и дорогое удовольствие.

Допустимые отклонения опалубки

Как и при любых других технологиях, в монтаже опалубки допускаются определённые отклонения, которые определяет СНиП Ш-15-76.

  • Во время установки конструкции: отклонение от оси – 0,15 см, от оси отдельных щитовых конструкций – 1,1 длины пролёта.
  • Отклонения от вертикали: по высоте одного метра допускается отклонение 0,5 см, по всей высоте до 2 см.
  • Неровность опалубки на длину до двух метров – 0, 3 см.
  • Отклонения разборных щитов по длине и ширине: до одного метра – 0,3 см, более одного метра – 0,4 см. По диагонали – 0,5 см.
  • Отклонение кромки щита – 0,4 см.

К скрытым отклонениям относится уровень основания траншеи и качество его подготовки.

Снижение сцепления бетона с опалубкой

Проблемы могут возникнуть при разборке щитовой конструкции из-за сцепки бетона с используемым материалом. На силу сцепки влияют несколько факторов: усадка смеси, неровность и пористость материала. Бетон больше сцепляется с деревом и металлом, меньше с пластмассой. Для того чтобы уменьшить сцепку, необходимо учесть некоторые факторы для правильного расчета этой величины:

  • Поверхность конструкции формируют из гладких материалов.
  • После монтажа опалубки и перед заливкой бетона на внутреннюю поверхность конструкции наносят специальную смазку.

Использование смазок резко снижает величину сцепления смеси с опалубкой. Например, при обработке смазкой стальной опалубки сцепление с бетоном по истечении суток уменьшается в 4–5 раз.

Расчет допустимой нагрузки на опалубку
Перед заливкой важно сделать расчет давления бетона на стенки. Допустимая нагрузка на опалубку рассчитывается исходя из материала и толщины стенок.

Вопрос №27 — Как провести расчет давления бетона на опалубку?

Александр Баловский из Архангельска спрашивает:

Как правильно провести расчет давления бетона на опалубку? Какие параметры влияют на этот расчет, что нужно учесть?

Ответ нашего специалиста:

Рассчитывая опалубку, важно определить все параметры, влияющие на ее прочность и устойчивость. Расчетные данные получают, учитывая все факторы влияния, в числе которых вес:

  • дополнительного оборудования,
  • бетонной смеси,
  • арматуры,
  • лесов и укладчиков, выполняемых работы по заливке.

Для обеспечения прочности и надежности вычисляют и ветровое влияние на конструкцию.

Вычисление боковой нагрузки

Расчет этого значения зависит от способа уплотнения. Формула выглядит так: P = γH, P = γ(0,27 + 0,78)К1К2, если используются укладочные вибраторы. Если они внутренние, пределы использования формулы составляют:

Здесь Р – максимальное давление раствора в кПа, γ – объемно-весовые показатели бетонной заливки в кг/м 3 , Н – высота слоя материала в метрах, ν – скорость заливки материала, м/ч, R, R1 – радиусы работы внутреннего и наружного вибратора в метрах. Если заливка малоподвижная, жесткая, с параметром осадки конуса от нуля до двух см, К1 принимает значение 0,8. Если от 4 до 6 см – К1=1. При осадке конуса от 8 до 12 см К1 = 1,2.

К2 зависит от температуры состава и принимает значение 1,15 при температуре от 5 до 7 о С, 1 при температуре от 12 до 17, 0,85 при диапазоне от 28 до 32 градусов по Цельсию.

Вертикальная и горизонтальная нагрузка

Это воздействие деталей конструкции и заливочной массы на вертикальную конструкцию. Вычисление зависит от:

  • общего веса элементов сооружения,
  • массы армирующих конструкций,
  • числа рабочих и транспорта,
  • объемно-весовых характеристик бетона.

Горизонтальная нагрузка включает ветровую, а также воздействие уложенного слоя на возделанные стенки. Чтобы провести этот расчет давления бетона на опалубку, следует умножить объемную массу укладываемого материала на высоту уложенного слоя. Полученное значение – в кПа. Воздействие воздушных потоков рассчитывается по СНиПам.

Определив указанные показатели, значительно проще выбрать опалубочную систему. Рекомендуется проводить расчеты, оставляя запас на прочность для любой выбранной системы – он поможет учесть фактор сезонности и изменение погодных условий во время монтажа и застывания растворе.

Вопрос №27 – Как провести расчет давления бетона на опалубку?
Расчет давления бетона на опалубку осуществляется по совокупности горизонтальной и вертикальной нагрузок, масс материалов и инструментов.

5.2 Нагрузки на опалубку от бетонной смеси

Нагрузка на опалубку от бетонной смеси определяется по СНиП 3.03.01-87 (приложение 11) и ГОСТ Р 52085-2003.

1. При расчете опалубки, лесов и креплений должны приниматься следующие нормативные нагрузки:

Вертикальные нагрузки:

а) собственная масса опалубки и лесов, определяемая по чертежам. При устройстве деревянных опалубок и лесов объемную массу древесины следует принимать: для хвойных пород - 600 кг/м 3 , для лиственных пород - 800 кг/м 3 .

б) масса свежеуложенной бетонной смеси, принимаемая для бетона на гравии или щебне из камня твердых пород - 2500 кг/м 3 , для бетонов прочих видов - по фактическому весу;

в) масса арматуры должна приниматься по проекту, а при отсутствии проектных данных - 100 кг/м 3 железобетонной конструкции;

г) нагрузки от людей и транспортных средств при расчете палубы, настилов и непосредственно поддерживающих их элементов лесов - 250 кг/м 2 ; палубы или настила при расчете конструктивных элементов – 150 кг/м 2 .

Примечания: 1. Палуба, настилы и непосредственно поддерживающие их элементы должны проверяться на сосредоточенную нагрузку от массы рабочего с грузом (130 кг), либо от давления колес двухколесной тележки (250 кг), или иного сосредоточенного груза в зависимости от способа подачи бетонной смеси (но не менее 130 кг).

д) нагрузки от вибрирования бетонной смеси - 200 кг/м 2 горизонтальной поверхности (учитываются только при отсутствии нагрузок по п. "г");

2. При ширине досок палубы или настила менее 150 мм указанный сосредоточенный груз распределяется на две смежные доски.

Горизонтальные нагрузки:

е) нормативные ветровые нагрузки - в соответствии со СНиП 2.01.07-85;

ж) давление свежеуложенной бетонной смеси на боковые элементы опалубки, определяемое по табл. 1 приложения 11 из СНиП 3.03.01-87.

Упрощенно, величину гидростатического максимального давления бетонной смеси, на боковые элементы опалубки можно определить по формуле:

Распределение давления по высоте опалубки принято по аналогии с гидростатическим давлением по треугольной эпюре.

При треугольной эпюре давления, результирующее давление можно определять по формуле:

P - боковое давление бетона в кг/м 2 на глубине h ;

γ - объемный вес сырого бетона в кг/м 3 (по п. «б» в большинстве случаев γ =2500 кг/м 3 );

h - высота уложенного слоя бетона в м, но не более h max = 1 м (при внутренней вибрации допускается принимать h max = 0,75 м).

На глубине hh max нагрузка от бокового давления принимается постоянной и равной (см. рис. 5.2.1, б)):

з) нагрузки от сотрясений, возникающих при укладке бетонной смеси в опалубку бетонируемой конструкции, принимаются следующими:

- Спуск по лоткам и хоботам, а также непосредственно из бетоноводов - 400 кг/м 2 ;

- Выгрузка из бадей емкостью от 0,2 до 0,8 м 3 - 400 кг/м 2 ;

- Выгрузка из бадей емкостью свыше 0,8 м 3 - 600 кг/м 2 ;

и) нагрузки от вибрирования бетонной смеси - 400 кг/м 2 вертикальной поверхности опалубки.

3. Выбор наиболее невыгодных сочетаний нагрузок при расчете опалубки и поддерживающих лесов должен осуществляться в соответствии с табл. 5.2.1.

4. При расчете элементов опалубки и лесов по несущей способности нормативные нагрузки, указанные в п.1, необходимо умножать на коэффициенты перегрузки , приведенные в табл. 5.2.2 настоящего приложения.

При совместном действии полезных и ветровых нагрузок все расчетные нагрузки, кроме собственной массы, вводятся с коэффициентом 0,9.

При расчете элементов опалубки и лесов по деформации нормативные нагрузки учитываются без умножения на коэффициенты перегрузки.

5. Прогиб элементов опалубки под действием воспринимаемых нагрузок не должен превышать следующих значений:

1/400 пролета элемента опалубки;

1/500 пролета для опалубки перекрытий.

В работе по установке опалубки могут пригодиться данные из «Справочника мастера-строителя» (1955) под ред. Казачека Г.А., приведенные ниже:

Бетонную смесь в каждом уложенном слое или на каждой позиции перестановки наконечника вибратора уплотняют до прекращения оседания и появления на поверхности и в местах соприкосновения с опалубкой блеска цементного теста и прекращения выхода пузырьков воздуха.

5.3.11. Виброрейки, вибробрусья или площадочные вибраторы могут быть использованы для уплотнения только бетонных конструкций; толщина каждого укладываемого и уплотняемого слоя бетонной смеси не должна превышать 25 см.

При бетонировании железобетонных конструкций поверхностное вибрирование может быть применено для уплотнения верхнего слоя бетона и отделки поверхности.

5.3.12. Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:

колонн и пилонов - на отметке верха фундамента, низа порогов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;

балок больших размеров, монолитно соединенных с плитами, - на 20 - 30 мм ниже отметки нижней поверхности плиты, а при наличии в плите капителей - на отметке низа капителей плиты;

отдельных балок - в пределах средней трети пролета балок в направлении, параллельном главным балкам (прогонам) в пределах двух средних четвертей пролета прогонов и плит;

массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций - в местах, указанных в проекте.

5.3.14. В процессе укладки бетонной смеси необходимо постоянно следить за состоянием форм, опалубки и поддерживающих подмостей.

При обнаружении деформаций или смещений отдельных элементов опалубки, подмостей или креплений следует приостановить работы на этом участке и принять немедленные меры к их устранению.

5.3.15. При укладке бетонной смеси при пониженных положительных и отрицательных или повышенных положительных температурах должны быть предусмотрены специальные мероприятия, обеспечивающие требуемое качество бетона.

5.4. Выдерживание и уход за бетоном

5.4.1. Открытые поверхности свежеуложенного бетона немедленно после окончания бетонирования (в том числе и при перерывах в укладке) следует надежно предохранять от испарения воды. Свежеуложенный бетон должен быть также защищен от попадания атмосферных осадков. Защита открытых поверхностей бетона должна быть обеспечена в течение срока, обеспечивающего приобретение бетоном прочности не менее 70%, в последующем поддерживать температурно-влажностный режим с созданием условий, обеспечивающих нарастание его прочности.

5.4.2. В бетоне в процессе твердения следует поддерживать расчетный температурно-влажностный режим. При необходимости для создания условий, обеспечивающих нарастание прочности бетона и снижение усадочных деформаций, следует применять специальные защитные мероприятия.

Мероприятия по уходу за бетоном (порядок, сроки и контроль), порядок и сроки распалубки конструкций должны устанавливаться в разрабатываемых для конкретного здания и сооружения технологических регламентах и ППР.

В технологическом процессе прогрева бетона в монолитных конструкциях должны быть приняты меры по снижению температурных перепадов и взаимных перемещений между опалубочной формой и бетоном.

В массивных монолитных конструкциях следует предусматривать мероприятия по уменьшению влияния температурно-влажностных полей напряжений, связанных с экзотермией при твердении бетона, на работу конструкций.

5.4.3. Движение людей по забетонированным конструкциям и установка опалубки вышележащих конструкций допускаются после достижения бетоном прочности не менее 2,5 МПа.

5.5. Контроль качества бетона в конструкциях

5.5.1. Для обеспечения требований, предъявляемых к бетонным и железобетонным конструкциям, следует производить контроль качества бетона, включающий в себя входной, операционный и приемочный.

5.5.2. При входном контроле по документам о качестве бетонных смесей устанавливают их соответствие условиям договора, а также в соответствии с требованиями ППР и Технологического регламента проводят испытания по определению нормируемых технологических показателей качества бетонных смесей.

5.5.3. При операционном контроле устанавливают соответствие фактических способов и режимов бетонирования конструкций и условий твердения бетона предусмотренным в ППР и Технологическом регламенте.

5.5.4. При приемочном контроле устанавливают соответствие фактических показателей качества бетона конструкций всем нормируемым проектным показателям качества бетона.

5.5.5. Контроль прочности бетона монолитных конструкций в промежуточном и проектном возрасте следует проводить статистическими методами по ГОСТ 18105, ГОСТ 31914 применяя неразрушающие методы определения прочности бетона по ГОСТ 17624 и ГОСТ 22690 или разрушающий метод по ГОСТ 28570 при сплошном контроле прочности (каждой конструкции).

Примечание. Применение нестатистических методов контроля, а также методов определения прочности бетона по контрольным образцам, изготовленным у места бетонирования конструкций, допускается только в исключительных случаях, предусмотренных в ГОСТ 18105, ГОСТ 31914.

5.5.6. Контроль морозостойкости бетона конструкций проводят по результатам определения морозостойкости бетона, которые должен представить поставщик бетонной смеси.

При необходимости контроля морозостойкости бетона в конструкциях определение морозостойкости бетона проводят по ГОСТ 10060, используя контрольные образцы, отобранные из конструкций, по ГОСТ 28570.

5.5.7. Контроль водонепроницаемости бетона конструкций проводят по результатам определения водонепроницаемости бетона, которые должен представить поставщик бетонной смеси.

При необходимости контроль водонепроницаемости бетона конструкций, определение водонепроницаемости бетона проводят по ГОСТ 12730.5 - ускоренным методом по воздухопроницаемости бетона.

5.5.8. Контроль истираемости бетона конструкций проводят по ГОСТ 13087, используя контрольные образцы, отобранные из конструкций, по ГОСТ 28570.

5.5.9. Контроль других нормируемых показателей качества бетона проводят по действующим стандартам на методы испытаний этих показателей качества.

5.6. Бетоны на пористых заполнителях

5.6.2. Материалы для легких бетонов следует выбирать в соответствии с рекомендациями Приложений Л, М и Н.

5.6.5. Основные показатели качества пористых заполнителей, легкобетонной смеси и легкого бетона должны контролироваться в соответствии с таблицей 5.3.

При расчетах опалубки первостепенной задачей является определение нагрузки, которая будет оказываться на её комплекс. Получение расчетных данных происходит с учетом множества факторов, среди которых: вес комплектующих опалубки, вес бетонной смеси, масса армирующих элементов, а также суммарный вес лесов и рабочих, задействованных при заливке. Кроме того, для обеспечения устойчивости конструкции и расчета требуемого количества подпорных элементов необходимо вычислить показатель ветровой нагрузки. В целом нагрузку, испытываемую опалубкой подразделяют на вертикальную и горизонтальную.

Расчет максимального бокового давления бетона на стенки опалубки

Вертикальная нагрузка

Под данным понятием подразумевается суммарная нагрузка, оказываемая на опорные элементы вертикальных опалубочных систем со стороны конструкционных элементов, заливочной смеси и других рабочих факторов. К расчетным компонентам вертикальной нагрузки относят:

  • Суммарный вес комплекса опалубочных элементов. Вес каждой комплектующей части указан в технической документации. При использовании опалубки из дерева масса высчитывается по константам, утвержденным в СНИП: 800 кг/куб.м. – для дерева лиственных пород, 600 кг/ куб.м. – для хвойных сортов древесины.
  • Масса армирующих элементов. Указывается в проектных данных или вычисляется по константе для ж/б конструкций, равной 100 кг/м3 (при отсутствии точных данных).
  • Нагрузка, оказываемая транспортом и живой рабочей силы. Номенклатурное значение данного показателя может отличаться для расчета конкретных элементов опалубки или их комплекса. В данном случае рассматриваются значения в 1,5 кПа и 2,5 кПа соответственно.
  • Масса бетона — высчитывается по фактическому весу компонентов или с использованием номенклатурных данных, для бетонных смесей с щебнем или гравием (2500 кг/ куб.м.).

Горизонтальная нагрузка

К данному комплексу влияющих факторов относятся:

  • нагрузка ветровая, чье значение высчитывается по СНиП 2.01.07-85;
  • показатель давления бетона на стенки опалубки, для расчета которого применяется следующая формула:

Дб = мВ где,

  • Дб – искомый показатель давления бетона кПа;
  • м — объемная масса бетонной смеси, кг/м3;
  • В — высота слоя бетона, м.

Горизонтальна нагрузка на боковую опалубку

Также к горизонтальным относят вибронагрузки, возникающие при уплотнении бетонной смеси специальными вибрационными инструментами.

Давление бетона на стенки опалубки и принятие решений

При определении показателя давления бетона выбор опалубочной системы значительно упрощается, ведь данный фактор является одним из основополагающих. При использовании деревянных опалубок приходилось учитывать показатель прогиба, в случае с металлическими системами, он не играет столь важной роли. Важные данные, касающиеся расчета опалубки, указаны в ГОСТР 52085-2003.

Профессиональные строители и инженеры рекомендуют оставлять запас прочности для любой опалубочной системы, учитывая сезонный фактор и изменяющиеся погодно-технические условия, возможные в процессе монтажа опалубки и застывания отливки. Идеальным решением, для осуществления расчетов с учетом всех имеющихся норм и правил, будет обращение в компанию, профессионально занимающуюся соответствующим видом деятельности.

Обращайтесь в специализированную компанию для проведения точных расчетов нагрузки бетона на стенки опалубки

Укрепительная подпорная стена может выполнять двоякую функцию – быть надежной опорой для грунта в точках перепада его высот или элементом .

Расчет давления бетона на стенки опалубки

Опалубка – это вспомогательная система возведенных конструкций, изготовляемая для придания требуемых форм для строительных смесей. Виды опалубок для стен Современное .

Расчет давления бетона на стенки опалубки

Правильная заливка бетона в опалубку – основа качества и красоты будущего строения. Любое дело в начале требует твердого основания – .

Специалисты–сметчики разделяются во мнении относительно процедуры документального учета опалубки. По мнению одних, комплект опалубки является единым инвентарным объектом (ИО) и .

ЛЮДИ. никогда не задумывался над таким вопросом - давление свежеуложенной бетонной смеси на опалубку. в снип - это давление = гамма*H (с небольшими оговорками). получается, что оно не зависит от толщины изготовляемого элемента. допустим имеется стена высотой 5 м, толщиной 10 см. в основании стены ордината бокового давления на опалубку примерно равна (по выше приведенной формуле) 10 т/м2 по п.м. равнодействующая Еа=25 т по п.м., вес всей стены на п.м. примерно 1 т. есть здесь противоречие или нет? кто-нибудь озадачивался таким вопросом?

Все нормально, не парься. Ведь давление на основание тоже не зависит от толщины конструкции, а только от ее высоты. Помню в учебнике по физике старина Паскаль на картинке в бочку вставил тоооонкую трубочку и со второго этажа плеснул в нее кружку водицы. Говорят с етой кружи бочку разорвало.

если так то давление на стену пирса в мировом океане отлично от давления на тот же пирс в реке. . т.к. масса воды в мировом океане куда как более массы воды в реке.

Механизатор широкого профиля (б/у)

ЛЮДИ. никогда не задумывался над таким вопросом - давление свежеуложенной бетонной смеси на опалубку. в снип - это давление = гамма*H (с небольшими оговорками). получается, что оно не зависит от толщины изготовляемого элемента. допустим имеется стена высотой 5 м, толщиной 10 см. в основании стены ордината бокового давления на опалубку примерно равна (по выше приведенной формуле) 10 т/м2 по п.м. равнодействующая Еа=25 т по п.м., вес всей стены на п.м. примерно 1 т. есть здесь противоречие или нет? кто-нибудь озадачивался таким вопросом?

Этим вопросом озадачиваются в 6 классе средней школы, когда открывают для себя закон Паскаля. А также на лабораторной работе по опредению величины атмосферного давления с помощью метровой стеклянной трубки и ртути (Торричелиева пустота).

Вы явно путаете давление (размерность - сила, деленная на единицу площади - например, Н/м2) с усилием, а точнее (терминологически) - с силой (размерность, соответственно, Н).

Почему Вас прежде не смущало, что ветер, создающий давление, скажем, 500 Па = 500 Н/м2 = 50 кгс/м2 = 0,05 т/м2 = 0,005 атм = 3,8 мм рт.ст., когда дует на дом шириной 40 м и высотой 30 м, давит на него с усилием (силой) 600 кН = 60 т?

проектирование гидротехнических сооружений

ЛЮДИ. никогда не задумывался над таким вопросом - давление свежеуложенной бетонной смеси на опалубку. в снип - это давление = гамма*H (с небольшими оговорками). получается, что оно не зависит от толщины изготовляемого элемента. допустим имеется стена высотой 5 м, толщиной 10 см. в основании стены ордината бокового давления на опалубку примерно равна (по выше приведенной формуле) 10 т/м2 по п.м. равнодействующая Еа=25 т по п.м., вес всей стены на п.м. примерно 1 т. есть здесь противоречие или нет? кто-нибудь озадачивался таким вопросом?

Мил человек, грешно спорить с законами физики… Конечно о некоторых можно пофилософствовать (например о теории относительности), но в простейших случаях такие споры не уместны! Мне кажется Вы просто напросто путаете вес (F=m*g [H]) и давление. Допустим имеем резервуар квадратной формы в плане и высотой 10м. Какое давление оказывает вода на основание?
P=ро*же*аш=1000*9.8*10=98кПа=98000Н/кв.метр
Масса воды в резервуаре?
m=(1х1х10)х1000=10000кг=10т
Сила с которой вода давит на дно резервуара?
F=10000*9.8=98000Н=98кН
ВСЁ СХОДИТСЯ.

А если тот же резервуар, но размерами 0.5м х 1.0м х 10м?

P=ро*же*аш=1000*9.8*10=98кПа=98000Н/кв.метр
m=(1х0.5х10)х1000=50000кг=5т
F=5000*9.8=49000Н=49кН
По Вашему тут косяк? – но ведь если через силу вычислить давление:
P’=F/S=49кН/0.5=98кПа
- такое же давление будет и в случае если резервуар имеет поперечное сечение 10х10см.
Ваша задача про свежеуложенный бетон – точно такая же. Отчасти из-за этого и избегают больших по высоте блоков бетонирования (бетонируют ярусами).

все правильно, всем спасибо!

(большой высоты бетонирования избегают, наверное, не только по названной причине)

>>sergtum
При бетонировании массивных конструкций основная причина, по которой высота блоков бетонирования из вибрированного бетона редко превышает 3 метра - это соблюдение температурного режима твердения бетона (для тонких конструкций - это не имеет значения).

Читайте также: