Бетон f75 и f150 разница

Обновлено: 28.04.2024

Одна из важных характеристик бетона, используемого для строительства в регионах с холодными зимами и температурными перепадами, – морозостойкость. Она определяет свойство материала выдерживать многократное замораживание и оттаивание.

Показателем морозостойкости бетона является марка, равная количеству циклов замораживания и оттаивания до возникновения видимых признаков разрушения, уменьшения прочности более чем на 5%, изменения физических характеристик.

Марка обозначается буквой F и числом, равным максимальному количеству циклов до состояния, обозначенного в нормативе.

Эта величина важна для смесей, применяемых при сооружении фундаментов, наружных стен, объектов гидротехнического назначения, опор мостов и других строительных конструкций ответственного назначения.

Классификация морозостойкости бетонов

Виды бетонных смесей по морозоустойчивости регламентируются ГОСТом 25192-2012. Помимо показателя F, морозостойкость могут определять следующие характеристики:

  • F1 – марка, установленная при исследовании материала, находящегося в водонасыщенном состоянии;
  • F2 – марка бетонных смесей, производимых для устройства покрытий дорог и аэродромов или эксплуатации в контакте с минерализованными водами, образцы для исследований насыщают 5% раствором NaCl.

Требования к морозостойкости бетона зависят от запланированной области его применения:

  • ДоF50. Это низкий уровень устойчивости к знакопеременным температурам. Такая смесь применяется для внутренних работ, в подготовительных строительных мероприятиях.
  • F50-F150. Этот материал со средним уровнем морозоустойчивости широко применяется в рядовом строительстве объектов, расположенных в регионах с умеренным, устойчивым климатом.
  • F150-F300. Такие бетоны востребованы при строительстве в регионах с холодным климатом.
  • ВышеF300. Смеси с высокой стойкостью к температурным перепадам применяются для сооружения объектов специального назначения, а также сооружений, эксплуатируемых в тяжелых климатических условиях.

Прочность и показатель морозостойкости всех видов бетона находятся в прямой зависимости: чем выше прочность, тем больше морозоустойчивость материала.

Таблица зависимости класса прочности и морозостойкости бетона

От каких факторов зависит морозостойкость бетона?

Основной параметр, влияющий на способность материала противостоять замораживанию и оттаиванию, – количество пор. Чем оно выше, тем большее количество воды проникает в бетонный элемент.

При отрицательных температурах вода меняет агрегатное состояние, превращаясь в лед с увеличением объема примерно на 10%. Поэтому с каждым циклом бетонная конструкция постепенно деформируется, утрачивая прочностные характеристики.


Вода, проникающая вглубь конструкции, разрушает не только сам бетон, но и вызывает коррозию стальной арматуры.

Способы определения морозостойкости бетона

Способы определения морозоустойчивости регламентирует ГОСТ 10060-2012. Методика актуальна при разработке новых рецептур и передовых технологий, контроле качества при купле-продаже. Для испытаний изготавливают образец кубовидной формы со сторонами 100-200 мм. Циклы замораживания и оттаивания осуществляются в диапазоне -18…+18°C. В соответствии с ГОСТом существует несколько вариантов вычисления этого показателя:

  • базовый многократный;
  • ускоренный многократный;
  • ускоренный однократный.

Если результаты ускоренных испытаний отличаются от результатов базовых, то эталонными считаются показатели базовых исследований.

Основные этапы базовых испытаний водонасыщенных образцов, проводимых в соответствии с ГОСТом:

  • Бетонные кубики насыщают водой и обтирают влажной тканью. Испытывают на сжатие.
  • Исследовательский материал помещают в морозильную камеру для замораживания. Выдерживают заданный режим.
  • Оттаивание производят в специальных ваннах.
  • После оттаивания с образцов щеткой удаляют отслаивающийся материал.
  • Кубики обтирают ветошью, определяют массу и исследуют на сжатие.
  • Обрабатывают результаты испытаний.

Пониженную морозостойкость материала можно определить и подручными методами. Конечно, результаты таких исследований не могут использоваться при составлении проектной документации.

  • Визуальный осмотр. О низкой устойчивости к знакопеременным температурам свидетельствует наличие трещин, бурых пятен, расслаивания, шелушения.
  • Определение водопоглощения. Если этот показатель равен 5-6%, то устойчивость к низким температурам будет пониженной.
  • Высушивание влагонасыщенного образца на солнце. Его растрескивание сигнализирует о пониженной морозостойкости.

Способы повышения морозостойкости

Повысить морозоустойчивость бетона можно несколькими способами:

  • Изолировать бетонный элемент от неблагоприятного внешнего воздействия с помощью обмазочных и окрасочных материалов, пропиток.
  • Использовать цемент более высоких марок. Чем прочнее вяжущее, тем выше морозоустойчивость готового бетонного элемента.
  • Получить плотную структуру материала путем тщательного уплотнения различными способами и создания благоприятных условий твердения бетонной смеси
  • Изготовить морозостойкий бетон можно путем введения в его состав специальных присадок.

Подробнее рассмотрим виды и принцип действия добавок:


  • Поверхностно-активные вещества. Обеспечивают образование плотной структуры.
  • Присадки, способствующие появлению шаровидных пор. Вода, проникшая в бетонную конструкцию, при замерзании выталкивается в эти пустоты, поэтому структура материала при изменении агрегатного состояния воды не повреждается.
  • Суперпластификаторы. Увеличивают плотность, повышают водонепроницаемость, а следовательно, показатели морозостойкости.
  • Добавки, улучшающие водонепроницаемость бетонного элемента и его внутреннюю структуру. К ним относятся «Дегидрол», «Пенетрон Адмикс», «Кристалл».

Присадки для бетона с глиноземистым цементом обычно не применяются, поскольку они могут не улучшить, а снизить характеристики материала.

Андрей Васильев

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Марки бетона по морозостойкости и водонепроницаемости бетонных и железобетонных конструкций в зависимости от режима их эксплуатации и значений расчетных зимних температур наружного воздуха в районе строительства должны приниматься:

для конструкций зданий и сооружений (кроме наружных стен отапливаемых зданий) — не ниже указанных в таблице:

Условия работы конструкций Марка бетона, не ниже
характеристика режима расчетная зимняя температура наружного воздуха, °С по морозостойкости по водонепроницаемости
для конструкций (кроме наружных стен отапливаемых зданий) зданий и сооружений класса по степени ответственности
I II III I II III
1. Попеременное замораживание и оттаивание:
а) в водонасыщенном состоянии (например, конструкции, расположенные в сезоннооттаивающем слое грунта в районах вечной мерзлоты) Ниже минус 40 F300 F200 F150 W6 W4 W2
Ниже минус 20 до минус 40 включ. F200 F150 F100 W4 W2 Не нормируется
Ниже минус 5 до минус 20 включ. F150 F100 F75 W2 Не нормируется
Минус 5 и выше F100 F75 F50 Не нормируется
б) в условиях эпизодического водонасыщения (например, надземные конструкции, постоянно подвергающиеся атмосферным воздействиям) Ниже минус 40 F200 F150 F100 W4 W2 Не нормируется
Ниже минус 20 до минус 40 включ. F100 F75 F50 W2 Не нормируется
Ниже минус 5 до минус 20 включ. F75 F50 F35* Не нормируется
Минус 5 и выше F50 F35* F25* То же
в) в условиях воздушно-влажностного состояния при отсутствии эпизодического водонасыщения (например, конструкции, постоянно подвергающиеся воздействию окружающего воздухе, но защищенные от воздействия атмосферных осадков) Ниже минус 40 F150 F100 F75 W4 W2 Не нормируется
Ниже минус 20 до минус 40 включ. F75 F50 F35* Не нормируется
Ниже минус 5 до минус 20 включ. F50 F35* F25* То же
Минус 5 и выше F35* F25* F15** «
2. Возможное эпизодическое воздействие температуры ниже 0 °С:
а) в водонасыщенном состоянии (например, конструкции, находящиеся в грунте или под водой) Ниже минус 40 F150 F100 F75 «
Ниже минус 20 до минус 40 включ. F75 F50 F35* «
Ниже минус 5 до минус 20 включ. F50 F35* F25* «
Минус 5 и выше F35* F25* Не нормируется «
б) в условиях воздушно-влажностного состояния (например, внутренние конструкции отапливаемых зданий в период строительства и монтажа) Ниже минус 40 F75 F50 F35* «
Ниже минус 20 до минус 40 включ. F50 F35* F25* «
Ниже минус 5 до минус 20 включ. F35* F25* F15** «
Минус 5 и выше F25* F15** Не нормируется «

Марки бетона по морозостойкости и водонепроницаемости наружных стен отапливаемых зданий в зависимости от режима их эксплуатации и значений расчетных зимних температур наружного воздуха в районе строительства должны приниматься: не ниже указанных в таблице:

Климат в России отличается длительными и холодными зимами, поэтому при строительстве зданий важную роль играет морозостойкость бетона. Под этим показателем понимают способность материала выдерживать определенное число циклов заморозки и оттаивания без изменения своих технических характеристик. Величина имеет особенное значение при устройстве фундаментов, возведении внешних стен, сооружении гидротехнических конструкций. Определяется она лабораторным путем с проведением испытаний на контрольных образцах.

Классы бетона по морозоустойчивости

Разновидности бетонных растворов по стойкости к низким температурам регламентируются ГОСТ 25192-2012. Марка бетона по морозостойкости обозначается буквой F, а расположенное рядом число указывает на количество циклов замораживания/оттаивания. Документ предполагает деление материалов на три класса:

  • Низкие – до F50, подходят для использования внутри помещений. Такие смеси применяются редко, так как быстро растрескиваются под воздействием внешней среды.
  • Средние – в диапазоне F50-F300, универсальные растворы, которые в зависимости от циклов могут применяться в умеренном или суровом климате.
  • Высокие – свыше F300, оптимальны для северных регионов, характеризующихся глубоким промерзанием почвы.

В качестве временного промежутка при определении морозоустойчивости принимается 1 год. Показатель напрямую зависит от прочностных параметров материала. Чем выше его марка, тем больше должна быть стойкость к морозам. Марка и класс бетона по морозостойкости в соотношении с количеством циклов представлены в таблице ниже.

Класс Марка Морозоустойчивость
от В7.5 до В12.5 М100, М150 F50
В15, В20 М200, М250 F100
В22.5, В25 М300, М350 F200
В30 М400 F300
от В35 до В45 М450-М600 F200-F300

Что влияет на морозостойкость?

Главным фактором, влияющим на морозоустойчивость смеси, является соотношение цемента и воды. При высоких показателях жидкости в бетонной массе будет оставаться вода, которая не вступила в реакцию. Постепенно она испаряется, но при этом оказывает воздействие на степень устойчивости к морозам. Коэффициент расширения при замерзании воды составляет 1.09, то есть при ее увеличении в объеме на 9% она будет действовать на застывший материал изнутри и приводить к его разрушению.

Рассматривая, что такое марка бетона по морозостойкости F и как она определяется, нужно отметить и другие факторы, воздействующие на показатель:

  • Водопоглощение – при соприкосновении с водой, не вступившей в реакцию, бетон имеет свойство ее поглощать, особенно в верхних слоях. Это приводит к процессам температурного расширения и последующему разрушению материала.
  • Пористость заполнителя – при добавлении в смесь заполнителя с пористой структурой в порах скапливается вода, которая при низких температурах замораживается и снижает морозоустойчивость.
  • Пористость бетона – внутренние поры раствора способны снижать давление при замерзании воды и тем самым уменьшать степень разрушения бетона.

Как определить морозостойкость?

Рассмотрим, как определяют марку бетона по морозостойкости. Для этого руководствуются нормами ГОСТ 10060-2012, согласно которым изготавливают образец в форме куба со сторонами от 100 до 200 мм. Полученный кубик насыщают водой или специальными добавками и замораживают температуре -18℃. В зависимости от материала насыщения различают базовые и ускоренные методы определения показателя. Базовые бывают двух видов:

  • Первый F1 – в качестве среды насыщения и оттаивания применяется только вода. Испытания могут проводиться для любых типов бетонов, за исключением материалов, которые используются для аэродромных и дорожных покрытий.
  • Второй F2 – средой насыщения при этом методе является вода, средой оттаивания служит 5%-ный раствор хлорида натрия. Испытания проводятся для смесей, которые применяются в аэродромном и дорожном строительстве.

Помимо базовых методов, марка бетона по морозостойкости определяется двумя ускоренными способами. В обоих случаях средой насыщения и оттаивания является хлорид натрия, но при одном из методов для заморозки применяют воздушную среду, при другом – хлорид натрия при температуре -50℃. Первый метод подходит для испытания всех бетонов, кроме легких или материалов для дорожных и аэродромных покрытий. Второй тип выбирается для всех бетонов, за исключением легких.

Лабораторные исследования можно совмещать с визуальным определением характеристик материала. О низкой морозоустойчивости могут свидетельствовать трещины в застывшем бетоне, расслаивание смеси, наличие в ней крупных частиц.

Способы повышения морозоустойчивости

В связи с тем, что на территории РФ холодные зимы, вопрос повышения морозоустойчивости является актуальным. Как говорилось выше, на показатель влияют прочность, состав, размеры и количество пор в структуре. Зная, что воздействует на стойкость к морозам, можно улучшить качество смеси использованием следующих способов:

  • Уменьшение объемов воды в смеси. Если добавить в цемент меньше воды, заливая при этом жидкость с минимальным загрязнением, это позволит сделать материал более стойким к низким температурам.
  • Снижение макропористости. Достигается благодаря добавлению специальных добавок, которые нивелируют потребность раствора в воде. С их помощью можно увеличить количество мелких пор, которые будут задерживать жидкость.
  • Воздухововлекающие добавки. При их введении поры будут заполняться воздухом, который не позволит проникать в них воде.
  • Гидроизоляция. Обеспечивается фасадными красками и полимерными пропитками, защищающими поверхность бетонных конструкций от действия влаги.

Если необходимо использовать морозостойкий бетон, марка материала должна быть высокой. При заливке в мороз целесообразно использовать противоморозные добавки, которые не будут позволять жидкости кристаллизоваться и превращаться в лед.


Виктор Филонцев

Образование:
НИУ МСГУ, Кафедра Технологии вяжущих веществ и бетонов, 2003.

Опыт работы:
12 лет в сфере производства бетона.

Текущая деятельность:
независимые консультации в сфере строительства.

Водонепроницаемость – важная характеристика бетона, характеризующая способность материала сохранять устойчивость к проникновению воды вглубь бетонной конструкции. Это свойство напрямую связано с еще одним важным параметром – морозостойкостью, то есть способностью бетонных элементов переносить циклы замерзания-оттаивания. Этот параметр обозначается буквой W и четными цифрами в диапазоне – 2-20. Использование бетона с хорошей водонепроницаемостью позволяет сэкономить на дополнительных гидроизоляционных мероприятиях.


Характеристики бетонов разных марок водонепроницаемости

Марка материала по водонепроницаемости выбирается, в зависимости от условий эксплуатации:

  • W2. Низкий показатель. Конструкции из этого строительного материала требуют проведения дополнительных гидроизоляционных мероприятий.
  • W4. Нормальный уровень водонепроницаемости. Такой материал применяется при строительстве фундаментов в грунтах невысокой влажности. Во влажных местах – с использованием наружной гидроизоляции.
  • W6. Материал наиболее применяем в индивидуальном и массовом строительстве.
  • W8. Водонепроницаемые бетоны используются при строительстве конструкций или объектов с повышенными требованиями к устойчивости к проникновению влаги.

Бетоны высокой водонепроницаемости марок W10-W20 используются при строительстве гидротехнических объектов, водохранилищ, бункеров.

Способы определения стойкости бетонов к проникновению влаги

Водонепроницаемость характеризуется прямыми и косвенными показателями. К основным показателям относятся:

  • Марка, определенная по технологии «мокрого пятна». При этом определяется максимальное давление, под воздействием которого образец остается непроницаемым для воды. Испытания осуществляются на специальной установке с гнездами для 6 образцов, которые могут иметь высоту 30, 50, 100, 150 мм. Нагрузку, прилагаемую к образцам, постепенно увеличивают до появления «мокрого пятна». Максимальным считается давление, при котором «мокрое пятно» появляется на двух образцах из шести.
  • Коэффициент фильтрации. Расчет коэффициента фильтрации бетона различных марок водонепроницаемости осуществляется с помощью специальной установки, подающей воду к образцам под давлением 1,3 МПа.

Таблица прямых и косвенных показателей водопроницаемости бетона

Косвенные показатели (актуальны для тяжелых бетонов)

Марка по водонепроницаемости

Максимальное давление, МПа

Коэффициент фильтрации, см/с

Водоцементное соотношение (вода/цемент)

Характеристики, влияющие на водонепроницаемость бетона

На эту характеристику влияет комплекс факторов:

  • Возраст бетона. Чем он больше (до определенных пределов), тем выше устойчивость материала к проникновению воды. Это правило выполняется при соблюдении условий твердения смеси. При увлажнении поверхность твердеющего бетона быстрее набирает нормативную прочность, по сравнению с поверхностью, находящейся на воздухе с относительной влажностью 50-70%. В условиях редкой смачиваемости максимальная водонепроницаемость наступает через полгода-год после заливки смеси. Увлажнение поверхности при твердении смеси особенно актуально для бетонов с низким водоцементным соотношением.
  • Пористость материала. Чем она больше, тем менее устойчив искусственный камень к проникновению воды вглубь бетонной конструкции. Наиболее устойчивы к проникновению влаги плотные бетоны. Наиболее влагопроницаемы пено- и газобетоны, особенно последние, для которых характерна открытая форма воздушных ячеек. У пенобетонов такие ячейки имеют закрытую структуру.
  • Скорость схватывания и твердения смеси. Слишком быстрое протекание этого процесса провоцирует появление трещин и воздушных пузырьков, снижающих влагоустойчивость материала.
  • Применяемое вяжущее. Лучшие показатели водонепроницаемости показывают бетоны на высокопрочном портландцементе и глиноземистом цементе. В период гидратации компоненты таких цементов формируют наиболее плотный цементный камень. Чем выше класс прочности бетона, тем выше марка его водонепроницаемости.
  • Наличие или отсутствие специализированных присадок – сульфатов железа и алюминия.

Удалить из смеси лишнюю воду, сделав затвердевший продукт более плотным, помогут рациональные технологии замеса, вакуумные установки, тщательное вибрирование вибраторами поверхностного и глубинного воздействия, прессование, вибропрессование.

Таблица соотношения классов прочности и марок водонепроницаемости бетонов

Добавки для повышения водонепроницаемости

Повысить устойчивость бетона к воздействию воды можно как на стадии его изготовления путем введения специальных присадок, так и после – с помощью различных технологий наружной гидроизоляции.

Сейчас предлагается широкий перечень добавок, повышающих водонепроницаемость бетона, разной эффективности, способа воздействия, стоимости. Присадки нового типа не только заполняют пустоты, но и способны расширяться при контакте с водой. К таким составам относятся Penetron Admix и его отечественный аналог «Кристалл».

Преимущества гидрофобизирующих добавок:

  • повышение водонепроницаемости и морозостойкости;
  • повышение прочности бетонного камня за счет роста плотности;
  • улучшение пластичности смеси, что избавляет застройщика от необходимости использовать пластифицирующие добавки;
  • организация защиты стальной арматуры от возникновения и развития коррозионных процессов.

Недостатком использования таких добавок является снижение теплоизоляционных характеристик бетонной конструкции. Это связано с тем, что присадки ликвидируют воздушные пузырьки, положительно влияющие на теплоизоляционные свойства бетона.

Гидрофобизирующие добавки могут быть:

  • жидкими;
  • сухими, добавляемыми в пластичную бетонную смесь;
  • сухими, растворяемыми предварительно в воде.

В строительстве наиболее часто используются составы на основе:

  • алкоксисиланов;
  • гидросодержащих силоксанов;
  • алкилсиликанов калия – наиболее дешевый высокощелочной раствор, при работе с которым необходимо соблюдать меры предосторожности.

Наружная гидроизоляционная обработка готовой бетонной поверхности

Способы создания наружной гидроизоляции бетонных элементов и конструкций:

  • Традиционные варианты – оклеечная и обмазочная гидроизоляция фундаментов и стен. Это затратный и мало эффективный метод предотвращения проникновения влаги вглубь бетонной конструкции. При использовании рулонных гидроизоляционных материалов для обработки фундаментов необходимо устроить защитный экран, иначе при засыпке котлована на полотнищах могут возникнуть разрывы.
  • Проникающая гидроизоляция. Наиболее известным представителем этой группы является Penetron, разные виды которого используются для объемной (внесение в пластичную смесь) и поверхностной гидроизоляции. Проникающая гидроизоляция поступает в продажу в виде сухого порошка или готового жидкого пропиточного продукта. В ее состав входят: портландцемент, наполнитель и активные химприсадки, функции которых выполняют полимеры или щелочные элементы.


Действие проникающей гидроизоляции основано на ее проникновении вглубь бетонной конструкции и вступлении в реакцию с составными компонентами цементного камня. В результате реакции в порах образуются водонерастворимые кристаллы, предотвращающие проникновение воды. Такой материал, наносимый на влажные основания, предназначен для наземных и подземных объектов. При нарушении целостности поверхности эффективность гидроизоляции не снижается. Для ликвидации фонтанирующих течей предназначены быстросхватывающиеся составы «Пенеплаг».


  • Гидроизоляционные материалы для защиты швов от проникновения воды. Комплекс из прокладки «Пенебар» и раствора «Пенекрит» позволяет защитить бетонные конструкции от проникновения воды через швы.

Способ повышения водонепроницаемости бетонного элемента или конструкции выбирается, в зависимости от уровня влажности окружающей среди, напора воды, воздействующего на объект, ответственности объекта.

Андрей Васильев

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Бетон это каменный строительный материал, получаемый в результате твердения залитой в форму и уплотненной полужидкой смеси. Его приготавливают путем перемешивания сухого вяжущего вещества, фракционных заполнителей и воды. В качестве вяжущего элемента наиболее часто применяется цемент, заполнители – щебень, гравий, керамзит, галька измельченный шлак.

Класс и марка бетона по прочности

Главный технико-эксплуатационный показатель таких материалов, это предел прочности при испытании на сжатие, который позволяет определить марку и класс бетона. При этом данная марка указывает среднее эксплуатационное значение прочности затвердевшего материала, а класс предельно допустимый показатель с возможностью небольшой погрешности.

Кроме этого физические характеристики бетонных материалов предусматривают маркировку по водопроницаемости и морозостойкости. Первый показатель очень важен при строительстве гидротехнических и подземных сооружений, а второй в значительной мере определяет долговечность строительных конструкций, построенных в холодных и умеренных климатических зонах.

Класс и марка бетона по прочности, влагостойкости и морозостойкости

Числовое обозначение класса бетона выражает измеренную прочность образца в мегапаскалях (МПа) и обозначается буквой «B». В диапазон возможных значений входят показатели от 3,5 до 40. Наиболее широко применяемые марки имеют значения от B10 до B40. Например, маркировка B30 означает, что данный строительный материал гарантированно выдержит испытательное давление до 30 МПа.

Марка обозначается буквой «M» и измеряется в кг/см 2 . В диапазон применяемых марок входят бетонные смеси M50-M1000, что означает среднюю прочность в диапазоне от 50 до 1000 кг/см 2 .

Таблица соотношения марки и класса

Класс бетонаСредняя прочность (кг/см 2 )
Марка бетона
В565М75
В7,598М100
В10131М150
В12,5164М150
В15196М200
В20262М250
В25327М350
В30393М400
В35458М450
В40524М550
В45589М600
В50655М600
В55720М700
В60786М800

Соответствие класса, морозостойкости и водонепроницаемости

Водонепроницаемость бетона обозначается буквой «W» и показывает давление воды, которое способна удерживать поверхность конструкции, не пропуская ее через имеющиеся поры. Величина этого показателя находится в пределах W2-W20. Для обычных зданий и сооружений водонепроницаемость обычно не превышает W4.

Морозостойкость определяет возможное количество последовательных циклов замораживания и оттаивания у бетонов во влажном состоянии. Допустимое нарушение прочности при таких испытаниях не должно превышать 5%. Обозначается буквой «F» и цифровым значением от 50 до 300 циклов. При наличии специальных добавок максимальное значение «F» может быть увеличено, но такие бетонные смеси в массовом строительстве не применяются.

Факторы, влияющие на повышение класса бетона


На прочность застывшей бетонной смеси оказывают влияние следующие факторы:

  • марка и количество используемого цемента;
  • чистота, качество и размер фракции наполнителей;
  • объемное соотношение воды и цемента в приготавливаемой смеси;
  • качество перемешивания составляющих компонентов и плотность укладки при формировании конструкций;
  • температура окружающего воздуха во время приготовления и использования бетона.

Как видно из перечисления основных факторов, качество бетона напрямую зависит от точного соблюдения принятых в строительстве технологий. Достижение нормативной прочности и соответствие классу на 90% бетонная смесь достигает через 72 часа после заливки в форму.

Определение прочности на сжатие

На заводах, где изготавливаются бетон и железобетонные изделия, прочность на сжатие определяется в лабораторных условиях при исследовании затвердевших контрольных образцов, размеры которых соответствую Государственным стандартам 10180-2012 и 28570-90.

Для определения показателей прочности бетона на сжатие в условиях строительной площадки необходимо:

При отсутствии пресса на строительной площадке, образцы передаются в лабораторию, оснащенную необходимым оборудованием.

Проведение данных мероприятий позволяет определить реальную прочность бетона, используемого для монтажа монолитных конструкций, во время строительства. При этом передача бетонных образцов в испытательную лабораторию позволяет получить данные не только о классе материала, но и другие технико-физические показатели.

Другие способы испытания бетона на прочность


Развитие современных технологий позволило создать приборы для быстрого определения прочности бетона без использования лабораторного прессового оборудования. Для этого используется специальный прибор – склерометр или молоток Шмидта.

Требования к технологии подобных неразрушающих измерений определены в ГОСТ 22690. Способ измерения основан на определении прочности бетона с использованием метода упругого отскока. Металлический боек молотка с определенным поперечным сечением ударяет с заданной силой в бетонную поверхность и отскакивает от нее вверх. Высота отскока фиксируется склерометром. В ходе испытаний производится несколько ударов, и результат вычисляется по среднеарифметическому показателю.

Данный результат менее точный, чем лабораторные испытания. На точность измерений влияет шероховатость поверхности, толщина испытуемого образца плотность бетонной массы. Однако молоток Шмидта позволяет получать оперативные данные, не задерживая производства строительных работ. У исправного прибора погрешность показателей прочности обычно не превышает 5%.

Прочность бетона на сжатие – важнейший показатель качества материала

Точное соблюдение технологии приготовления бетонной смеси и ее правильная укладка в опалубку обеспечат высокое качество строительных конструкций. Однако контроль прочности материалов и соответствие необходимого класса и марки должен проводиться в обязательном порядке определенном стандартами и нормативными требованиями. Обеспечить такой контроль, можно только определяя показатели прочности на сжатие или используя неразрушающие методы проверки.

Применение различных классов бетонных смесей

Применение этого материала в строительстве строго регламентировано стандартами, которые мы уже упоминали выше. Но, что бы не вникать в эти нормативы, можно выделить следующие положения, в зависимости от места бетонирования и класса применяемого для этого бетона.

Читайте также: