Баритовая добавка в бетон

Обновлено: 29.04.2024

Аннотация научной статьи по технологиям материалов, автор научной работы — Калашников В.И., Демьянова В.С., Калашников Д.В., Махамбетова К.Н.

Приведен анализ и сравнение различных заполнителей для особо тяжелого высокопрочного бетона для защиты от радиации. В качестве заполнителей были применены барит, магнетит, чугунный скрап, кварцевый песок, лимонит и оптическое стекло ТФ-10. В качестве оптимального радиационно-защитного материала предложен особо тяжелый высокопрочный бетон на основе вторичных ресурсов.

Похожие темы научных работ по технологиям материалов , автор научной работы — Калашников В.И., Демьянова В.С., Калашников Д.В., Махамбетова К.Н.

Высокоэффективные порошково-активированные бетоны различного функционального назначения с использованием суперпластификаторов

Текст научной работы на тему «Оптимизация состава особо тяжелого высокопрочного бетона для защиты от радиации»

УДК 691.327: 666.97-136-16

В.И. КАЛАШНИКОВ, В.С. ДЕМЬЯНОВА, доктора техн. наук, Д.В. КАЛАШНИКОВ, К.Н. МАХАМБЕТОВА, кандидаты техн. наук, Пензенский государственный университет архитектуры и строительства

особо тяжелого высокопрочного бетона

для защиты от радиации

Как показывает практика, особо тяжелый высокопрочный бетон для одновременной защиты от у-излучений и нейтронных потоков изготавливают, как правило, на тяжелых заполнителях из барита, железной руды, лимонита, магнетита, металлического скрапа и др. [1]. В табл. 1 представлена плотность особо тяжелого бетона на различных заполнителях по данным [2].

Ниже приводятся физико-механические свойства и сравнительная характеристика бетонов, изготовленных на различных заполнителях и применяемых для создания тепловой и биологической защиты ядерных реакторов и других источников ионизирующих излучений.

Бетон, изготовленный на базальтовых заполнителях, имеет среднюю плотность 2410—2620 кг/м3 и характеризуется большой однородностью по плотности и химическому составу. Заполнители на основе базальтов отличаются от обычных заполнителей наличием значительного количества элементов с большим атомным номером ^е, Са, Т^ Мп, К), которые хорошо ослабляют нейтроны [3]. Бетоны на базальтовых заполнителях имеют слабокристаллизованную структуру с небольшими кристаллами, вследствие чего они достаточно стойки к воздействию повышенной и высокой температуры. Дополнительным преимуществом их являются достаточно близкие коэффициенты линейного температурного расширения [3]. Зерна дробленого базальта имеют угловатую форму. Это ухудшает удо-бообрабатываемость и способность бетонной смеси к уплотнению, что часто вызывает необходимость повышения величины водоцементного отношения. С другой стороны, подобная форма заполнителей улучшает сцепление их с цементным камнем и способствует увеличению прочности бетона при сжатии. В возрасте 28 сут она составляет 67—77 МПа. Базальтовый

Вид заполнителя Показатели плотности, кг/м3

Лимонитовый 2500 3000

Магнетитовый 2800 4000

Баритовый 3300 3600

Чугунный скрап 3700 5000

Комбинированный: - с лимонитовым песком и обычным щебнем из тяжелых каменных пород; - с баритовым щебнем; - магнетитовым щебнем; - с металлическим скрапом 2400 3000 2900 3600 2500 3200 3800 5000

бетон на портландцементе имеет высокие показатели модуля упругости, износостойкости, морозостойкости и низкое водопоглощение.

Плотность лимонитового бетона достигает только 2500—2900 кг/м3 вследствие малой плотности лимони-товой руды (3960 кг/м3 в куске). Однако содержание химически связанной воды в таком бетоне может быть вдвое больше (до 11 мас. %). Допускаемая температура эксплуатации без потери химически связанной воды 160оС [3]. По данным [4], при нагреве до 300оС лимони-товый заполнитель теряет половину химически связанной воды. При 500оС потеря воды составляет уже около 70%, а при температуре более 800оС вода испаряется полностью. Вследствие слоистой структуры заполнителя усадка лимонитового бетона колеблется в значительных пределах 0,6—1,2 мм/м [3]. Введение в лимонито-вые бетоны, даже в небольших количествах, стальных заполнителей повышает плотность до 3500—4000 кг/м3, прочность при сжатии до 35—40 МПа, а также снижает величину усадки до 0,4 мм/м.

Несмотря на невысокую плотность серпентинито-вого бетона (2300-2600 кг/м3), этот вид бетона является эффективной защитой от нейтронов всех энергий [3]. Это обусловлено высоким содержанием химически связанной воды, достигающей 10-15 мас. % при 20оС и 10% при 400оС [5]. В связи с этим серпентини-товый бетон сохраняет достаточное количество воды при температуре 400-500оС, что делает защиту достаточно эффективной. Модуль упругости серпентинито-вого бетона при 20оС 18200 МПа, при 500оС - 4420 МПа. Серпентинит пригоден для бетонов, используемых в конструкциях, подверженных воздействию температуры до 500оС. Такая стойкость обеспечивается малокри-сталлизованной формой скальной породы и соответствующим температурным расширением (6—9)-10-6-К-1, равномерным во всех направлениях и постоянным при разной температуре.

Для защиты от нейтронного и гамма-излучения, в условиях высокой температуры хорошо зарекомендовал себя бетон, в качестве заполнителей в котором используют хромитовые руды. Бетон на таких заполнителях выдерживает температуру до 1770оС. Хромитовый бетон на портландцементе, выдерживающий интегральный поток нейтронов 2,74 025 н/м2 при 200—350оС, описан в [6]. Образцы из хромитового бетона после облучения в указанных условиях сохраняли размеры, форму и достаточно высокую прочность. Аналогичными свойствами обладает бетон на магнетите и гематите. Плотность бетона на песке и щебне из магнетита составляет около 4000—4500 кг/м3, а прочность при сжатии достигает 50—70 МПа. Магнетитовые бетоны характеризуются хорошей теплопроводностью. Коэффициент теплопередачи их составляет 2,675—3,256 Вт/(м2-К).

Используемая фракция смеси стеклозаполнителя Содержание стеклозаполнителя в смеси, % Плотность смеси, кг/м3 Межзерновая пустотность, %

в насыпном состоянии, рнас в уплотненном состоянии, рупл в насыпном состоянии, Vnнaс в уплотненном состоянии, Шупл

1,25-2,5 13,2 2916 3414 43,7 34

Расход материалов на 1 м3 бетонной смеси, кг Дозировка С-3 в стеклоносителе, % Дозировка С-3 с водой затворения,% В/Ц ОК, см Ж, с Прочность, МПа Плотность, кг/м3

Ц П СЩ Щ Сп Сл СН

481 - 2312 - 1044 - 99 1,03 - 0,28 3-5 11,5 41 77

560 - 2312 - 1135 - 99 0,88 - 0,24 - 24,5 68 92

25-30 4337 4310 4297

510 280 2312 - 523 - 50 0,42 - 0,23 3-4 26 55 72

510 560 2312 - - - 50 0,42 - 0,27 5-6 16 48,6 66

478 - 2312 - - 897 82 0,83 - 0,29 - 3,2 26 40

300 - 2312 - 1319 65 1,08 - 0,43 - ,5 13 20

560 560 - 1300 - - - - - 0,38 2-4 17,6 38 74

560 560 - 1300 - - - - 1 0,29 2-4 24 65 91

Примечание. Ц - цемент; П - песок; СЩ - стеклощебень; Щ - щебень; Сп - стеклопесок (смесь фракций); Сл - стеклопесок фр. 0,14-2,5 мм; СН - стеклоноситель.

Температурный коэффициент линейного расширения магнетитового бетона составляет (9—15)^ 10-6 К-1, что обеспечивает в защитах из них равномерные температурные градиенты и, следовательно, температурные напряжения [3]. Близки по своим свойствам и бетоны на гематитовом заполнителе. Средняя плотность гематито-вого бетона 3800 кг/м3. Тепловой коэффициент линейного расширения гематитового бетона 5,9-10-6-К-1. Гематиты сильнее кристаллизованы, чем магнетиты, и состоят из большого числа крупных кристаллов. В связи с этим гематитовые бетоны менее стойки к воздействию высоких температур по сравнению с магнетитовыми бетонами. Радиационно-стойкий при флюенсе нейтронов до 7-1024-н/м-2 гематитовый бетон имеет следующий состав: портландцемент — 295—315 г/м3; гематит (крупный заполнитель) — 2150—2650 кг/м3; тонкомолотая добавка (гематит) — 295—315 кг/м3; вода — 230—300 кг/м3. Средняя плотность бетона 3000—3500 кг/м3. При указанной радиационной нагрузке линейное расширение бетона равно 1—2%. Бетон может быть использован в защите при температуре до 800оС. Кроме того, бетон на гематитовом заполнителе в два раза дешевле хромитового бетона.

Баритовые бетоны с заполнителем из баритовой руды имеют плотность 2700—3800 кг/м3; прочность при сжатии 16—30 МПа; прочность при растяжении составляет лишь 8—10% прочности при сжатии; коэффициент теплопередачи 1,28—1,98 Вт/(м2-К); температурный коэффициент линейного расширения (20-30) 10-6-К-1 в интервале температур 20-900оС [3]. Из всех бетонов, получивших широкое применение в сооружениях ядерных объектов, баритовые бетоны наименее стойки к темпера-

турным воздействиям, особенно цикличным. Это обусловлено тем, что кристаллы BaSO4 имеют значительные размеры, а также значительное и одновременно неодинаковое по кристаллическим осям температурное расширение Сх = 19 10-6-К-1; Су = 22 10-6-К-1; dz = 35-10-(6-К-1. При воздействии температурных циклов расшатывается как структура заполнителя, так и структура бетона. Учитывая это обстоятельство, баритовые бетоны рекомендуется применять лишь в конструкциях, не подвергаемых воздействию температуры свыше 80оС. Баритовые бетоны имеют низкую морозостойкость. Через 25 циклов попеременного замораживания и оттаивания баритового бетона происходит снижение его прочности на 40-60%. Это обусловлено присутствием в барите растворимых солей. Макроскопическое сечение поглощения гамма-излучения с энергией 5 МэВ для баритового бетона составляет 0,101 см-1. Вместе с тем в отличие от бетонов на железорудных заполнителях баритовые бетоны не вызывают существенного вторичного гамма-излучения.

Модифицирование бетонов на тяжелых плотных заполнителях стальным и чугунным ломом позволяет значительно повысить плотность бетона. Например, средняя плотность бетона, изготовленного из чугунных чушек, достигает 3000-5000 кг/м3. Плотность бетонов на металлическом скрапе в виде обрезков и отходов от штамповки металла, отходах от производства ферро-фосфора, феррокремния или на свинцовой дроби составляет 3600-6800 кг/м3. Вместе с тем такой бетон имеет несколько худшие механические показатели по сравнению с обычным бетоном, что объясняет трудности достижения равномерности состава и плотности

Расход материалов на 1 м3 бетонной смеси Расход добавок, % В/Ц ок , см Плотность, кг/м3 Прочность при сжатии, МПа, в возрасте, сут

цемент стекло-песок стекло-щебень стекло-носитель С-3 ОПЭ К^04 + Na2CO3 1 28

544 1081 2202 94 0,86 0,001 - 0,33 16 4025 22 35 62 100

544 1081 2202 94 0,86 0,001 0,65+0,14 0,33 4025 28,6 62,8

при укладке. Модуль упругости у бетона на заполнителе из чугунного лома (1—2,3) 104 МПа; прочность 6—11,5 МПа; усадка через 6 месяцев 0,45 мм/м; полная усадка 0,75 мм/м.

Использование в качестве заполнителей металлических отходов и чугунной дроби позволяет получить бетон плотностью 6800 кг/м3. При соответствующих методах укладки и уплотнения бетонной смеси удается получить бетон с плотностью 7000 кг/м3 и более [3]. Металлические заполнители перед применением должны быть очищены от масляных пленок, которые снижают сцепление их с цементным камнем [3]. Температурный коэффициент линейного расширения бетона на стальном ломе 5,1-10-6-К-1. Недостатком тяжелого бетона с железным ломом является активация железных включений под действием нейтронного потока и выделение ими жестких вторичных излучений.

Значительно превосходит защитные свойства бетон на свинцово-порошковом заполнителе. Свинец является поглотителем нейтронов и эффективным замедлителем гамма-излучения. Технология приготовления такого бетона не отличается от обычного. Бетон на основе алюминатного цемента и свинца в качестве заполнителя предлагается также для биологической защиты стен реакторов. Средняя плотность 8500 кг/м3; предел прочности при сжатии в возрасте 28 сут 30 МПа; при растяжении — 6 МПа.

Выполненный анализ свидетельствует, что бетон на основе тяжелых высокоплотных заполнителей из железных руд, хромита, барита обладает достаточно хорошей радиационной стойкостью. Согласно [4] он способен без существенного ухудшения строительно-технических свойств выдерживать длительное действие радиации с интегральным потоком нейтронов до 5-1024 н/м2 при рабочей температуре до 500оС. При локальных перегревах такой бетон устойчив до 1100оС, хотя и теряет до 70% исходной прочности.

В настоящее время возможности повышения плотности растворной матрицы бетона заметно возросли за счет использования эффективных добавок, способных снизить водопотребность бетонной смеси на 20—30% [7]. Особенно эффективно использование суперпластификаторов в комплексе с тонкомолотыми дисперсными и ультрадисперсными минеральными наполнителями, такими как микрокремнезем, зола-унос, металлургические шлаки и др. [8]. Введение суперпластификатора на дисперсных носителях позволяет снизить водоцемент-ное отношение до 0,28—0,32 [9].

Введение оптического стекла ТФ 10 в цементные суспензии в качестве тонкодисперсного носителя суперпластификатора в количестве до 20% массы цемента позволяет обеспечить водоредуцирующее действие суперпластификатора на различных видах цемента в пределах 44—50%. Очевидно, следует ожидать значительного снижения водопотребности бетонных смесей, изготовленных на комплексе мелкого и крупного стеклозаполни-теля и стеклоносителе суперпластификатора. В связи с этим получение особо тяжелого высокопрочного бетона

достигали, с одной стороны, путем комплексного использования тяжелого свинцово-силикатного оптического стекла ТФ 10 в качестве заполнителя и наполнителя бетонных смесей, с другой — за счет низкого водоце-ментного отношения, обеспеченного введением суперпластификатора на дисперсном стеклоносителе.

Опытные образцы-кубы размером 10x10x10 см готовили на цементе марки ПЦ500Д0 ПО «Осколцемент». В качестве крупного заполнителя использован дробленый стеклозаполнитель фр. 5—10 мм. Для сравнения готовили бетон на гранитном щебне фр. 5—10 мм марки М1400 Свердловского карьера.

Расход цемента для высокопрочного бетона находится в пределах 500-600 кг/м3 [9]. Поэтому на первом этапе исследований было принято его минимальное количество 480 кг/м3 с дальнейшим повышением до максимального значения Ц=620 кг/м3. Содержание дисперсного стеклоносителя суперпластификатора изменяли от 12 до 20%. При таком его содержании доля С-3 от массы цемента достигала 0,86-1,08%. В пересчете на массу смешанного вяжущего содержание С-3 составило 0,75-0,85%.

С целью повышения плотности бетона с учетом высокой межзерновой пустотности стеклозаполнителя фр. 5-10 мм (55,6%) предварительно изучали его гранулометрический состав. Минимальная межзерновая пу-стотность в насыпном и уплотненном состоянии 43,7 и 34% соответственно обеспечивает смесь фракций заполнителей при соотношении, указанном в табл. 2.

Составы и физико-механические свойства особо тяжелого высокопрочного бетона, изготовленного на стек-лозаполнителе и гранитном щебне, представлены в табл. 3. Как показали проведенные испытания, максимальная плотность 4297 кг/м3 была достигнута для бетона на заполнителе оптимальной гранулометрии (состав 3). Прочность при сжатии такого бетона достигает 92 МПа (при В/Ц=0,24), что не уступает бетону на гранитном заполнителе при водоцементном отношении В/ Ц=0,29. Соотношение компонентов бетонной смеси цемент:дисперсный носитель:стеклопесок:стеклоще-бень для указанного состава было принято 1:0,18:2,03:4,13 или 1:6,34 (цемент:стекло).

При использовании суперпластификатора С-3 не удалось получить бетонную смесь при В/Ц=0,24 на гранитном заполнителе фр. 5-10 мм и песке с Мкр=2,2 той же подвижности, что и на стеклозаполнителе. Только благодаря использованию оптического стекла в качестве мелкого и крупного заполнителя, а также сухого введения С-3 на дисперсном стеклоносителе эта задача была реализована. Можно полагать, что чрезвычайно низкая водопотребность стеклозаполнителя позволила бы изготовить бетонные смеси меньшего водосодержа-ния при наличии более эффективного суперпластификатора.

Достаточно высокая плотность 3870-4100 кг/м3 была получена для сильно наполненного тощего бетона низкой марки (прочность при сжатии в возрасте 28 сут 20 МПа, состав 7) и средней марки (40 МПа, состав 6).

Соотношение компонентов бетонной смеси для бетонов указанных составов было принято: состав 7 — 1:0,22:4,39:7,7 или цемент:стекло - 1:12,3 при В/Ц=0,43; состав 6 — 1:0,17:1,88:4,84 или цемент:стекло — 1:6,9 при В/Ц=0,29.

Низкое значение В/Ц в составах 3 и 4 обеспечивает в структуре бетона преимущественно гелевую и кон-тракционную пористость, что в свою очередь способствует снижению объемных изменений бетона при попеременном увлажнении и высушивании.

Необходимо отметить, что специфические особенности стеклозаполнителя, а именно его высокая плотность, вносят существенный вклад в изменение подвижности и жесткости бетонных смесей.

Установлено, что при одинаковой осадке конуса ОК=1—2 см бетонные смеси на стеклозаполнителе имеют меньшую жесткость, чем смеси на природных заполнителях. Одинаковый коэффициент уплотнения бетонных смесей марки по удобоукладываемости П1, изготовленных на стеклозаполнителе, достигается при времени вибрирования, в два раза меньшем по сравнению со смесями на природных заполнителях.

Для монолитного и сборно-монолитного строительства рекомендованы высокоподвижные и нерасслаива-ющиеся бетонные смеси (табл. 4), характеризуемые средней прочностью в пределах 50—60 МПа с достаточно высокими темпами набора суточной прочности при температуре 20оС.

Ключевые слова: особо тяжелые высокопрочные бетоны, тяжелые заполнители, модифицированные бетоны,

суперпластификаторы, защита от радиационного излучения.

1. Баженов Ю.М. Технология бетона. М.: Изд-во Ассоциации высших учебных заведений, 2002. 500 с.

2. Баженов Ю.М., Комар А.Г. Технология производства строительных материалов М.: Стройиздат, 1990. 182 с.

3. Дубровский В.Б., Аблевич З.И. Строительные материалы и конструкции защиты от ионизирующих излучений. М.: Стройиздат, 1983. 240 с.

4. Виноградов Б.Н. Влияние заполнителей на структуру и свойства бетонов. М.: Стройиздат, 198. 249 с.

5. Ицкович С.М., ЧумаковЛ.Д., Баженов Ю.М. Технология заполнителей бетона. М.: Высшая школа, 1991. 272 с.

6. Ицкович С.М. Заполнители для бетона. М.: Высшая школа, 1972. С. 208—211.

7. Калашников В.И., Демьянова В.С., Коровкин М.О., Калашников Д.В. Методологические и технологические аспекты формирования ранней суточной прочности мелкозернистых пластифицированных бетонов: В сб. «Современные проблемы строительного материаловедения. VI Академические чтения». Иваново, 2000. С. 163—166.

8. Каприелов С.С., Батраков В.Г. Модифицированные бетоны нового поколения: реальность и перспектива // Бетон и железобетон. 1996. № 6. С. 6—10.

9. Баженов Ю.М., Бабаев Ш.Г., Чумаков Ю.М. Влияние суперпластификаторов 10-03 и 30-03 на свойства бетонной смеси и бетона с учетом химико-минералогического состава цементов. Применение химических добавок в технологии бетона. М.: Знание, 1998. С. 54—56.

Среди разновидностей особо тяжёлых бетонов существует так называемый баритовый бетон, который состоит из минерального вяжущего вещества (цемента) и воды, а в качестве наполнителя там выступает баритовая руда, которая может иметь разную фракцию (песок или щебень). Кроме того, наполнитель может быть смешан с чугунной дробью или вторичным металлом (металлические отходы — скрап).

Ниже мы более подробно поговорим об этом материале, методах его изготовления и применения в строительстве, а кроме того, посмотрим демонстрацию тематического видео в этой статье по этой же теме.

Барит

Сфера применения

Защитное средство в медицинских технологиях

Строительная смесь с BaSO4

Строительная смесь с BaSO4

  • В зависимости от объёмной массы все бетоны, основанные на цементе можно разделить на особо лёгкие — менее 500 кг/м 3 , лёгкие — от 500 кг/м 3 до 1800 кг/м 3 , тяжёлые — от 1800 кг/м 3 до 2500 кг/м 3 и особо тяжёлые — более 2500 кг/м 3 . Последний вариант обычно предназначается для возведения различных сооружений защитного типа, которые препятствуют проникновению радиоактивного излучения.
  • В настоящее время (данные ООН), после естественного радиоактивного фона, следующее место занимает облучение в медицинских (лечебно-профилактических) целях, причём не в отдельно взятой стране, а, в общем, на Земном шаре. По статистике на одного жителя планеты приходится 2,8мЭб, где 14% приходится на медицину, а в России эти цифры составляют 3,3мЭб и 31,2% соответственно. (См. также статью Декоративный бетон: особенности.)
  • Без оборудования, которое излучает радиоактивный фон, в медицине сегодня обойтись уже невозможно и оно, безусловно, приносит огромную пользу в диагностике и терапевтическом лечении. Но есть и обратная сторона медали — это вредоносное воздействие на организм пациентов, медперсонала и даже посторонних людей, случайно оказавшихся в соне досягаемости. Рентгеновское (ионизирующее) излучение может оказаться причиной лучевой болезни, ожогов, злокачественных опухолей, а также стать причиной мутации живых организмов.
  • Поэтому, вполне естественно, что инструкция СанПиН (санитарные правила и нормы) предусматривает не только средства личной защиты и экранирование приборов, но и применение специальных строительных материалов, способных образовывать защитное покрытие. Например, такие нормативные документы предусматривают определённый расчёт уровня защиты (толщину слоя) для пола, потолка и стен процедурных кабинетов данного типа. В этих случаях наиболее приемлемо использование строительных материалов с высокой степенью радиационной защиты (РЗ).

Примечание. Наиболее известная РЗ, это свинцовые листы, но для этой цели применимы разные элементы с высоким атомным номером, к которым, собственно, и относится барит — BaSO4 (греческое значение слова «барис» — тяжёлый).
Это природный сульфат бария, тяжёлый шпат, содержащий в себе 65,7% BaO и 34,3% SO4. Кроме того, там могут присутствовать различные примеси, такие как кальций, стронций и свинец.

  • Всероссийским НИИ медицинской техники и оборудования в конце 80-ых годов XX столетия были разработаны способы РЗ без применения свинца на основе оксидов редкоземельных элементов (отходы предприятий Минатома). Преимущества BaSO4 перед свинцом достаточно явные — он безвреден, тогда как материалы, содержащие свинец, токсичны и, кроме того, подвержены быстрому старению. (См. также статью Гидротехнический бетон: особенности.)

Другие отрасли

Примечание. Как мы уже говорили, баритобетон — это очень тяжёлый материал, ведь примерно 80% его состава занимает Ba SO4, следовательно, его нельзя использовать на грунтах с недостаточной несущей способностью (возможна просадка).

Баритовые ЖБК

При заливке и формовании бетонных и железобетонных изделий с применением барита в качестве наполнителя, следует учитывать, что вас ожидает достаточно большой показатель усадки (такое явление приводит к уменьшению объёма ЖБК в результате схватывания, высыхания и твердения).

Для получения монолита раствор с BaSO4 заливают в нужное место для формования (опалубка, литьевая форма), после чего начинается его обработка вибрированием, что позволяет избавиться от пор (воздушных пузырьков), которые непременно остаются в процессе укладки смеси. Для этого используют либо вибростолы, либо переносные вибрационные устройства, этот процесс, а также собственный вес раствора способствует высокому проценту усадки

Баритобетон (ББ) используется не только в качестве радиоактивной защиты, но и как материал с повышенной химической стойкостью для сооружения различных промышленных объектов. Учитывая тот фактор, что цена ББ довольно высока и, к тому же, такие конструкции имеют узкую специализацию в применении, данный материал в наши дни не получил широкого распространения.

Тем не менее, благодаря высоким качествам конструкций, которыми они обладают для радиоактивной и химической защиты, использование ББ плотно заняло собственную нишу в проектировании и строительстве сооружений специального назначения.

Конечно, ББ выдерживает воздействие различных агрессивных химических элементов (щелочей, кислот) и радиации, но для этого существуют и альтернативные способы, с применением других материалов. Но, несмотря на высокую стоимость и отсутствие популярности, существуют направления, где практически невозможно осуществлять строительно-монтажные работы без его применения.

Баритобетонный блок. Фото разлома

Баритобетонный блок. Фото разлома

Самыми важными характеристиками при определении высокого качества ББ являются несколько параметров, которые мы рассмотрим более детально. Прежде всего, от такой монолитной или сборной конструкции добиваются максимального уровня поглощения радиационного излучения. Это, пожалуй, основной критерий, по которому и определяется необходимость применения ББ на специализированных объектах промышленного или оборонного строительства.

Так, наличие в составе наполнителя баритового бетона металлического скрапа способствуют стопроцентному задержанию частиц альфа и бета излучения.

Таким материалом также поглощается гамма излучение, но здесь уже присутствует некоторый ряд коэффициентов, используя которые можно рассчитать достаточную толщину преграды, чтобы свести радиационный фон до уровня, безопасного для жизни и здоровья обслуживающего персонала, то есть, сделать его естественным для человеческого организма.

Ядерный бункер

Практически невозможно переоценить эффективность ББ при строительстве бункеров — такие стройматериалы в данной сфере можно назвать незаменимыми для создания соответствующих условий нормальной жизнедеятельности и пребывания там людей. Помимо РЗ человека и оборудования такой бункер будет обладать высокими прочностными показателями, поскольку он возводится из ББ, относящегося к классу особо тяжёлых бетонов.

Как и при изготовлении обычных тяжёлых ЖБК, для баритового бетона используют армирующие металлические каркасы, делающие материал ещё прочнее в механическом отношении. При этом, требования, как к сборным, так и к монолитным конструкциям остаются неизменными — металл должен покрываться слоем раствора не менее чем 50 мм.

Радиационно-защитный ровнитель

Также вы можете создать радиационно-защитный слой в какой-либо комнате своими руками, используя для этого необходимые смеси, размешивая их с водой — пропорции и время приготовления указываются заводом-изготовителем.

Если вы хотите оборудовать частный кабинет, то вам следует иметь для этого проектную документацию, составленную по СНиП 3.04.01-87, которая определяет нужную толщину. При создании монолитных ЖБК ориентируются на ГОСТ 52085-2003.

Заключение

Как бы там ни было — используются ли сборные ЖБК или делается монолит непосредственно на стройплощадке с использованием BaSO4 — там будет задействован цемент в качестве вяжущего элемента. Учитывая высокую стоимость создаваемого материала и его особое назначение, там используются только высокие марки свежего и качественного цемента.


Баритовый бетон – строительная смесь, относящаяся к особо тяжелым бетонам. В его состав входит вода, минеральное вяжущее вещество (цемент), баритовая руда в виде щебня или песка, которая выступает в качестве наполнителя, и различные добавки, например, вторичный металл или чугунная дробь.

Где применяется?

Основная сфера – в медицине, в качестве защитного средства.

Дело вот в чем, все бетонные смеси можно разделить на несколько типов:

  1. Особо легкие (до 500 кг/м3)
  2. Легкие (от 500 до 1800 кг/м3)
  3. Тяжелые (от 1800 до 2500 кг/м3)
  4. Особо тяжелые (свыше 2500 кг/м3)

Последний вариант используется для создания защитных сооружений, которые препятствуют прохождению радиоактивного излучения.

По статистике ООН, в настоящее время люди чаще всего получают облучение радиацией в естественных условиях. На втором месте – медицинские учреждения.

По статистическим данным, на одного жителя планеты в среднем приходится 2,8 МэВ (мегаэлектронвольт), на жителя России – 3,3 МэВ. Причем доля полученного излучения в медицинских учреждениях составляет порядка 14 и 31,2% соответственно.

Очевидно, что в медицине без оборудования, излучающего радиоактивный фон, уже невозможно обойтись – оно очень эффективно при диагностике и терапевтическом лечении.

Однако, как отмечалось выше, радиоактивный фон крайне негативно влияет на организм больного, врачей, и людей, оказавшихся в зоне излучения.

Таким образом, предписания СанПиНа диктуют не только экранирования приборов, использование средств личной защиты, но и использование в строительстве специальных строительных материалов, которые могут обеспечить защиту от радиоактивного излучения. В документах прописаны расчетные значения толщины пола, потолка и стен для процедурных кабинетов. Это обуславливает актуальность применения строительных материалов, обладающих высоким уровнем защиты от радиации.

Тут важно отметить, что самым эффективным средством защиты от радиации являются листы из свинца, но также используется и барит – природный сульфат бария. Допустимы примеси стронция, свинца, калия.

Преимущества бария перед свинцом очевидны – он безвреден, а материалы, содержащие свинец – токсичны и подвержены быстрому старению.

Поскольку баритовый бетон относится к категории особо тяжелых бетонов, его нельзя использовать на слабых грунтах – есть высокая вероятность просадки.

Другие сферы применения

Для изготовления железобетонных и бетонных изделий.

Примечание – используя барит в качестве наполнителя, помните о том, что у него очень большой показатель усадки. В результате схватывания, схватывания и твердения объем изделия уменьшается.

Для изготовления изделия раствор с баритом заливают в форму, после чего проводят вибрирование.

Для сооружения промышленных объектов и объектов оборонного назначения.

Используется в редких случаях для строительства сооружений специального назначения, в этом случае критерием выбора является не только защита от радиации, а еще повышенная химическая стойкость.

Яркий пример незаменимости баритобетона – его использование при постройке позволит создать бункер не только с высоким уровнем защиты от радиации, но и с впечатляющими показателями прочности.

Преимущества баритового бетона

  • Высокий уровень поглощения радиационного излучения
  • 100% задержание частиц альфа и бета излучения
  • Частично поглощается гамма излучение

В любом случае, в качестве вяжущего элемента баритобетона выступает цемент. Учитывая, что стройматериал стоит дорого, используются только высокие марки цемента.


В размолотом виде включается как наполнитель в состав сухой строительной смеси, которая называется баритовая штукатурка (БШ). Высокая плотность камня обусловливает его защитные свойства против рентгеновских лучей.

Поэтому сфера применения смеси ограничена основным назначением — там, где есть необходимость в защите от рентгеновских лучей.

Сфера применения

Наполнитель из барита — порошок белого цвета, а сухая смесь на его основе может использоваться как штукатурка для выравнивания поверхностей. Главное цель использования — защита людей, находящихся в помещениях, расположенных рядом с местами, где используют рентген-лучи.

Это производства, учреждения, эксплуатирующие аппараты с источниками радиации:

  • стоматологические клиники, рентгеновские, томографические кабинеты;
  • промпредприятия, где есть технологические процессы с применением радиоактивных веществ;
  • лаборатории, исследовательские институты, проводящие испытания с помощью гамма-лучей;
  • хранилища радиоактивных элементов.

Штукатурка баритовая рентгенозащитная заменяет дорогие экраны из свинца. Когда нужна более высокая степень защиты, используют плиты, нарезанные из барита.

Сферы применения баритовой штукатурки - рентгенкабинет





Общие рекомендации

Перед оштукатуриванием баритовой штукатуркой вся проводка и инженерные коммуникации уже должны быть проложенными. Штробить штукатурку категорически запрещается – появляются места с недостаточным экранированием рентгеновских лучей.

Никогда не сушите штукатурку при помощи вентиляторов и тем более тепловых пушек. Ускоренное высыхание не позволит цементу набрать прочность, как следствие – штукатурка начинает крошиться. А это крайне опасно в случае использования баритовой штукатурки.

Образование трещины при неправильной сушке

Образование трещины при неправильной сушке

Очень сухие кирпичные стены нужно предварительно смачивать. Такая стена быстро впитывает воду, коэффициент адгезии резко понижается.

Если температура в помещении выше +22–25°С, то по окончании работ стену следует намочить, делать это лучше на ночь.

Перед оштукатуриванием рекомендуется проверить раствор, если он плохо держится на стене, то добавьте немного цемента. На недостаток цемента указывает и быстрое расслоение массы на воду и твердые фракции.

Главный совет – баритовая штукатурка относится к комплексу специальных защитных строительных работ, к которым предъявляются очень высокие требования по качеству и соблюдению технологии. Не спешите, работайте внимательно и ответственно.

Требования санитарных органов к нанесению баритовой штукатурки

Контроль санитарно-эпидемиологического благополучия людей осуществляет Госсанэпидемнадзор. Применение баритовой штукатурки попадает под действие СанПиН 2.6.1.1192-03 «Гигиенические требования к рентгеновским кабинетам». Надзор в части баритового покрытия включает проверку содержания барита в смеси по техусловиям ГОСТ 4682-84, расхода штукатурки в зависимости от толщины защитного слоя.

Соответствие показателей проверяется по протоколам испытаний экранирующего покрытия, составляемых по форме системы стандартов безопасности ГОСТ 12.4.217-2001.

Порядок приготовления смеси баритобетон М200

Защитный раствор с прочностью 200 кг/см² используют для заливки полов, изготовления перегородочных бетоноблоков, заливки стен с применением опалубки, оштукатуривания поверхностей. Смесь для изготовления баритобетона может быть полностью сухой или состоять из жидкого затвердителя объемом 6 л и баритового порошка массой 24 кг с полимерными добавками.

Баритовая штукатурка разных производителей

Порядок приготовления раствора:

  1. Поместить компоненты в бетономешалку, перемешать до однородности.
  2. Добавить воду небольшими порциями до достижения необходимой консистенции. Для оштукатуривания смесь делают более жидкой, а полы, стены заливают вязким раствором.
  3. Расходовать приготовленный баритобетон нужно в течение 45 минут: после этого времени начинается полимеризация, необратимое усыхание смеси.

Последнее обстоятельство обязывает мастера рассчитывать количество загружаемых компонентов исходя из числа рабочих на укладке раствора.

Виды баритовой штукатурки

Расход на 1 м2

В проектной документации на объект с источниками радиоактивного излучения предусматривается защита свинцовыми щитами. Толщина пластин рассчитывается исходя из максимальной мощности гамма-излучения.

Толщина слоя штукатурки принимается по толщине свинцовой защиты. Определить точную величину сложно из-за неодинакового качества баритового порошка у разных изготовителей: содержание барита в смеси колеблется в пределах 85-95%.

Зависимость толщины баритовых штукатурных покрытий, расход штукатурки на 1 м², рассчитанный по толщине защиты из свинца приведены в таблице.

Если проектная мощность оборудования меняется, корректируется и степень защиты. При этом согласование исправлений с санитарными органами обязательно.

Компоненты штукатурки

Основа смеси — баритовый песок фракцией до 1,25 мм, цвет белый, серый. Вяжущее вещество — портландцемент или цемент магнезиальный. Последний применяют, когда нужно ускорить твердение. По признаку скрепления компонентов рентгенозащитные составы бывают баритобетонными, цементно-баритовыми, магнезиально-баритовыми.

— марка прочности не должна быть ниже М300;

— доля в смеси 85-95% в зависимости от марки вяжущего вещества, требуемой крепости раствора;

— составляют до 3% от общего веса, добавляются для удобства работы с песчано-цементной массой;

— при использовании заводской сухой строительной смеси вливается постепенно в количестве 200 г на 1 кг порошка до получения нужной вязкости.

Эффективной защиты от радиации с помощью баритовой штукатурки можно добиться двумя путями. Первый — использовать высокомарочный цемент М500, чтобы песок в смеси составлял 95%. Второй — увеличивать толщину наносимого слоя: работать на вяжущем М300 с концентрацией наполнителя 85%. Оба способа дают одинаково хороший результат.

Нанесение баритовой штукатурки

Техника безопасности

Во время нанесения штукатурки важно использовать средства индивидуальной защиты. Барит ядовит, и его пыль не должна проникать в организм! В обязательном порядке применяют респираторы, защитную одежду, специальные очки и перчатки. Поверх высохшего покрытия всегда наносят надежный финишный слой.

Баритовая штукатурка является качественным и эффективным средством защиты людей от ионизирующего излучения. Она считается узкоспециализированным составом, поэтому в быту эксплуатируется редко. Чтобы результат применения материала был полноценным, чрезвычайно важна правильность нанесения и выбор только сертифицированной штукатурки.

Технология выполнения работ

Особенность покрытия из барита — его большая толщина: от 1 см до 0,5 м и более. Если используется баритовая штукатурка, технология нанесения защитного слоя зависит от его расчетной толщины. Работы выполняются в установленной регламентом последовательности по этапам. Как и при укладке рядовой штукатурки, укрываемую поверхность подготавливают: очищают от гвоздей, шурупов, грязи, наслоений, заделывают цементно-песчаным раствором трещины, выбоины. В укладке баритового экрана есть особенности, которые нужно учитывать.

Основные этапы

Подготовленную поверхность очищают от пыли, обезжиривают. Для лучшего сцепления раствора основание грунтуют.

. Требуется при многослойном оштукатуривании. Периодичность установки — 15 мм баритового слоя, шаблон крепления саморезами, гвоздями — 50х50 см, без провисания.

. Его толщина составляет до 1 см. Материал нужно распределять равномерно, не допуская пропусков. Для лучшего сцепления с другим слоем можно начертить шпателем полоски по свежеуложенной смеси. Дать время подсохнуть, покрыть грунтовкой и оставить на 2-3 часа.

. Они наносятся также с периодической укладкой штукатурной сетки, обработкой грунтовкой.

. Набор прочности длится 7 дней, после чего поверхность шлифуют под декоративную отделку: краску или обои.

Время высыхания слоев зависит от температуры окружающего воздуха, толщины нанесенного пласта.

Как наносится баритовая штукатурка

Особенности нанесения штукатурки

Техника и технология нанесения баритовой штукатурки отличаются от укладки простых растворов для выравнивания поверхностей. Специфика обусловлена большим удельным весом сухой смеси, необходимостью формирования многослойных покрытий.

Особенности нанесения баритовой штукатурки:

  • оптимальные условия: температура окружающего воздуха +15…+35°С, уровень влажности 75%;
  • смесь наносится слоем до 1 см без применения оборудования для набрызга раствора, т.е. вручную;
  • место штукатурных работ укрывают от осадков, затеняют;
  • требуется применение опалубочной технологии, если проектная толщина покрытия ≥2 см;
  • нужно устройство бетонной стяжки поверх пола из бетонобарита для упрочнения основания под рентгеновское оборудование.

При оштукатуривании перекрытий баритовый раствор заводят в соседнюю комнату на 2 см. Минимальный слой для потолочных поверхностей — 50 мм.




Стяжка для пола

Баритоцементная стяжка для пола.

Для отделки пола помещений с рентгеновским оборудованием используют баритово-цементную смесь. Чтобы раствор был прочным и равномерно распределялся по поверхности, в состав добавляют пластификаторы.

Пропорции для приготовление сухой смеси для стяжки своими руками:

  • Концентрат барита КБ-5, КБ-3 — 6 кг;
  • Цемент ПЦ-400 -1 кг;
  • Вода — 1,4 л.

Примеры готовых составов: Fullmix «Ровнитель баритовый», «Альфапол М-Барит», Ilmax Protect.

При заливке раствора необходимо использовать металлическую армирующую сетку. Баритоцементный раствор должен быть уплотнен поверхностным вибратором, а также закрыт на 10 дней полиэтиленовой пленкой для предотвращения появления трещин.

Баритовую стяжку пола можно отделать любым напольным покрытием: плиткой, линолеумом, паркетом и др.

Штукатурка для рентгенкабинетов

Защита медицинских работников, посетителей поликлиник от губительного воздействия гамма-лучей — главное назначение покрытий на основе баритового песка. Рентгенозащитная штукатурка является отделочным материалом, защищающим от проникающих лучей.

Преимущества применения баритовой штукатурки

Рентгенкабинеты, соседние с ними помещения оштукатуривают бетонобаритом при выполнении таких условий:

  • толщина защитного слоя — не меньше 2,5 см, что соответствует облицовке поверхностей свинцовыми пластинами в 2 мм;
  • точное соблюдение инструкции по приготовлению баритовой смеси, технологии, регламента нанесения.

От выполнения этих условий зависят здоровье, жизнь людей, которые в силу профессии находятся вблизи источников облучения в течение длительного времени. С точки зрения экономики штукатурка из барита имеет преимущество перед свинцовым экраном. При равенстве защитных свойств бетонобарит дешевле, несмотря на больший его расход.

Производители готовых смесей

Наиболее популярной на рынке, а также одной из самых качественных считается штукатурка баритовая марки Fullmix от . Она широко применяется при обустройстве рентген-кабинетов, хранилищ и может использоваться в домостроении. Материал характеризуется пластичностью, прочностью, влагостойкостью, при этом реализуется по доступной цене.


Баритовая стяжка на пол«ГИДРОЦЕМ БАРИТ» — сухая смесь на основе сульфата бария (баритового концентрата), цемента, песка и функциональных добавок. При смешивании с водой баритовая стяжка образует удобную в работе пластичную смесь. Слой материала проектной толщины (подробнее — таблице ниже) обеспечивает защиту от рентгеновского излучения. Является оптимальной альтернативой свинцовым листам и другим материалам. Баритовая стяжка помогает защитить не только стены помещения, но и пол.

Подготовка поверхности под нанесение баритовой стяжки

Основание должно быть прочным, очищенным от пыли, грязи, жиров, масел, битума, остатков краски и других веществ, ослабляющих прочность сцепления раствора с основанием. Поверхность рекомендуется дополнительно обработать грунтовкой соответствующей виду основания.

ПРИГОТОВЛЕНИЕ РАСТВОРНОЙ СМЕСИ

Для приготовления раствора сухую смесь добавить в емкость с заранее отмеренным количеством воды (оптимальная температура воды 18–20° C), тщательно перемешать до получения однородной консистенции. Выдержать 5 мин, а затем повторно перемешать. Раствор готов к применению. Не рекомендуется добавлять воду в растворную смесь повторно. Расход воды меняется в зависимости от температуры и влажности окружающего воздуха. В каждом конкретном случае точный расход воды подбирается методом пробного замеса небольшого количества растворной смеси.

Для приготовления стяжки «ГИДРОЦЕМ БАРИТ» на 1 мешок (25 кг) сухой смеси необходимо 4,25 — 4,75 литра воды.

ПОРЯДОК РАБОТЫ

Укладка баритовой стяжки производится полосами по заранее установленным направляющим. Ширина полос укладки зависит от конкретных условий: габаритов помещения, длины правила или виброрейки. Растворную массу выложить на подготовленное основание и разровнять правилом или виброрейкой, оставляя ровную поверхность без борозд и пустот. Направляющие вынимаются из раствора до его окончательного затвердевания, пустоты заделываются свежим раствором.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ*

Наименование параметра стяжка «ГИДРОЦЕМ БАРИТ»
1 Температура применения, ˚С +5 — +35
2 Расход материала, кг/м 2 /10 мм толщины 22 – 24
3 Расход воды для затворения, л/кг 0,17 – 0,19
4 Максимальный размер зерна заполнителя, мм 2,5
5 Водоудерживающая способность, %, не менее 95
6 Марка по подвижности растворной смеси Пк4
7 Плотность растворной смеси, кг/м 3 2350±50
8 Минимальная толщина слоя, мм 10
9 Максимальная толщина слоя, наносимого за один раз, мм 60
10 Марка по морозостойкости, не менее F50
11 Время использования готовой растворной смеси, минут, не менее 60
12 Предел прочности при сжатии в возрасте, МПа, не менее
— 24 часа
— 28 суток
5,0
20,0
13 Предел прочности при изгибе, в возрасте 28 суток, МПа, не менее 4,0
14 Прочность сцепления с бетоном в возрасте 28 суток, МПа, не менее 0,5
15 Усадка через 28 суток, %, не более 0,1
16 Возможность хождения через, часов 24
17 Удельная эффективная активность естественных радионуклидов Аэфф, не более 370 Бк/кг

*при температуре +(20±2)°С и относительной влажности воздуха (60±10)%.

Условия хранения баритовой стяжки

Мешки с сухой смесью необходимо хранить в крытых помещениях, обеспечивая герметичность упаковки и предохранения смеси от увлажнения.

Изготовитель гарантирует соответствие смеси требованиям Технических условий при соблюдении правил транспортирования и хранения.

Гарантийный срок хранения сухих смесей – 6 месяцев от даты изготовления, указанной на мешке.

Читайте также: