Автоклавная обработка изделий из ячеистого бетона теория и практика от aeroc international

Обновлено: 13.05.2024

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Автоклавная обработка является одной из важнейших операций при изготовлении изделий из ячеистого бетона. Её режимы напрямую влияют на такие качественные характеристики готового продукта, как морозостойкость, усадка при высыхании, прочность при сжатии, внешний вид изделий (отколы, трещины). Базовое понимание процессов, происходящих в автоклаве, важно как при полностью автоматическом регулировании работы автоклава, так и при ручном управлении.

В данной статье мы кратко обобщим опыт, накопленный на заводах холдинга «Aeroc International» в автоклавной обработке.

Процесс изготовления ячеистого бетона

В этом разделе представлен краткий обзор всего процесса изготовления ячеистого бетона, поскольку определённые операции, входящие в этот процесс, напрямую влияют на поведение материала при автоклавной обработке.

Ячеистый бетон изготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие — известь и цемент — содержат CaO, который имеет решающее значение для процесса. Песок или зола вводит в процесс SiO2. Из компонентов CaO, SiO2 и Н2О в автоклаве при воздействии высокого давления и высокой температуры образуется новый минерал — тоберморит (С4S5H5).

Собственно, образование новых минералов тоберморитовой структуры и возводит ячеистый бетон автоклавного твердения (в просторечии — газобетон) в совершенно другой ранг по сравнению с неавтоклавным ячеистым бетоном («пенобетоном»). Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Химические процессы, происходящие на разных стадиях производства, можно представить в следующем виде:

1. Выделение водорода на стадии образования пористой структуры в сырце:

2. Образование гидроксидов и гидросиликатов на стадии набора сырцом пластической (транспортной) прочности:

3. Образование новых минералов (тоберморита) на стадии автоклавной обработки:

Для наиболее полного протекания реакций в процессе автоклавной обработки необходимо, чтобы исходные материалы имели достаточно тонкодисперсную структуру. На стадии помола к кремнезёмистому компоненту добавляется гипсовый камень, который служит, в первую очередь, для регулирования реакций в автоклаве, а также ускоряет набор сырцом необходимой пластической прочности.

В смесителе сырьевые материалы перемешиваются, причём на качество перемешивания могут влиять как время смешивания, так и последовательность введения в смеситель сырьевых материалов. На выходе из смесителя должны быть обеспечены высокая гомогенность и определённая вязкость смеси.

Один из важнейших параметров — температура смеси на выходе из смесителя, которая очень сильно влияет на весь дальнейший процесс. При вспучивании газомассы и наборе сырцом необходимой для резки пластической прочности температура в массиве растёт. Огрубляя, можно сказать, что рост температуры продолжается примерно 1–1,5 ч; дальнейший прирост составляет лишь 1–3 °C. Однако температура в массиве распределяется неравномерно, она уменьшается в слоях, которые контактируют с бортами заливочной формы и воздухом.

Так как температура массива и её распределение являются важными для некоторых этапов автоклавной обработки, хотим обратить особое внимание на то, что все заводы «Aeroc» оснащены тепловыми тоннелями, которые препятствуют охлаждению массивов через стенки заливочных форм. Кроме того, заливочные формы первого цикла всегда доводятся в тепловых тоннелях до температуры, примерно соответствующей температуре заливки.

При резке массивов большое внимание уделяется отсутствию сквозняков, особенно — в зимнее время. Разрезанные массивы также находятся в тепловых тоннелях, которые препятствуют понижению температуры поверхности сырца, так как передача тепла в ячеистый бетон при автоклавной обработке происходит тем быстрее, чем выше его температура при загрузке в автоклав.

Этапы автоклавной обработки

При разработке режимов автоклавной обработки и привязке их к конкретному технологическому циклу необходимо учесть массу факторов и особенностей того или иного производства: качество сырьевых материалов, параметры смеси (температура и отношение В/Т), номенклатура выпускаемой продукции (размеры, наличие армирования, плотность ячеистого бетона), расположение запариваемых массивов в автоклаве, условия и время выдержки перед автоклавной обработкой и другое.

Автоклавная обработка принципиально разбивается на четыре этапа:

(1) подготовка ячеистого бетона к подъёму давления;

(2) подъём давления;

(3) изотермическая выдержка ячеистого бетона при определённых температуре и давлении;

(4) сброс давления и подготовка изделий к выгрузке из автоклава.

Первый этап может включать (вместе или раздельно) следующие мероприятия:

1. Продувка или предварительный подогрев изделий без давления.

2. Предварительный подогрев изделий при давлении.

Целью первого этапа является оптимальная подготовка сырца и среды в автоклаве ко второму этапу процесса — подъёму давления.

Из опыта нашей работы следует, что для изделий, внутренняя температура которых менее 80 °C , наиболее предпочтительным из вышеуказанных мероприятий первого этапа является вакуумирование.

За счёт снижения давления в автоклаве вода, находящаяся в материале, начинает кипеть. Кипение воды начинается в самой теплой части массива, а именно — во внутренней его области. При дальнейшем снижении давления кипение продвигается от внутренней области массива наружу, что приводит к полному удалению воздуха из материала. При этом сам материал разогревается, температура по толще массива выравнивается. Необходимый вакуум зависит от конечной температуры массива и, как правило, составляет 0,5 бар. Максимальное разряжение достигается через 25–30 мин и далее поддерживается в течение 15–25 мин. Вакуумирование необходимо производить при горячем автоклаве (температура стенки автоклава должна быть не менее 80 °C ). Эту температуру всегда легко сохранить в условиях постоянного производства. В противном случае перед началом процесса автоклавной обработки автоклав необходимо предварительно разогреть без продукции.

Вакуумирование необходимо производить при горячем автоклаве.

Причинами плохого вакуумирования могут быть неисправности, связанные с вакуумной задвижкой, системой автоматического управления, а также неудовлетворительное функционирование вакуумного насоса.

Второй этап – подъём давления – заключается в разогреве материала до температуры изотермической выдержки (как правило, 190–193 °C). Разогрев происходит, главным образом, благодаря конденсации горячего пара на относительно холодной поверхности массивов, температура которых в начале процесса ниже температуры насыщенного пара. Образующийся конденсат переносит тепло в ячеистый бетон. Конденсация воды из пара может происходить как в виде капель, так и в виде закрытых водяных плёнок. В какой форме это происходит, зависит, в первую очередь, от разности температур между паром и ячеистым бетоном. Образование закрытых плёнок препятствует теплопередаче, что крайне нежелательно.

Для получения качественных изделий подъём давления следует проводить в три этапа:

(1) от –0,5 бар до 0 бар — 30–45 мин;

(2) от 0 бар до 3 бар — 30–45мин;

(3) от 3 бар до 12 бар — 65 мин.

Если на изделиях появляются отколы и трещины, то подъём давления на первых двух этапах необходимо вести медленнее. Однако если увеличение времени каждого из этапов до 60 мин не даёт должного эффекта, нужно вмешаться в процесс заливки: изменить параметры смеси.

При достижении ячеистым бетоном температуры 150 °C начинается ускоренный экзотермический разогрев массивов за счёт энергии, освобождающейся при образовании гидросиликатов. Особое внимание следует обратить на то, что остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением. Особенно это характерно для армированных изделий и бетонов, плотность которых более 500 кг/м3.

Остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением.

Изотермическая выдержка проводится в течение определённого времени при заданных давлении и температуре, которые обеспечивают достаточно глубокое протекание химических реакций образования новых минералов.

Оптимальная температура изотермии при производстве ячеистого бетона составляет 190–193 °C, рабочее давление в автоклаве — 11,5–13 бар. Время выдержки зависит как от номенклатуры продукции (мелкоштучные блоки или армированные изделия), так и от её плотности. Для плотности 350–500 кг/м3 оптимальное время выдержки составляет 360 мин при давлении 12 бар.

Если сырьевые материалы подобраны правильно, а рецептура рассчитана корректно, в автоклаве на стадии выдержки происходит самопроизвольный рост давления без подачи в автоклав пара.

Сброс давления должен проводиться плавно. Продолжительность сброса давления зависит в основном от номенклатуры продукции и от плотности изделий. Для плотностей 350–500 кг/м3 оптимальное время сброса, по нашему опыту, составляет 90 мин. Для изделий плотностью 600 кг/м3 и более, а также для армированных изделий, продолжительность сброса увеличивается, а сам сброс проводится ступенчато с разными градиентами.

Рис 1. Изображение процесса в виде графика

Причины дефектов в материале, которые возникают при автоклавной обработке и пути их устранения

1. Не затвердевшие участки массива (рис. 2).



Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае. (продолжение в следующей рассылке)

Д. Рудченко,
Руководитель по развитию ООО «Аэрок СПб»

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Продолжение, начало в рассылке №64

1. Не затвердевшие участки массива (рис. 2).



Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае, когда при автоклавной обработке температура бетона в этих областях недостаточна для образования гидросиликатов. Причиной может послужить недостаточность вакуумирования, в результате которой вода в этих зонах не закипает и воздух не вытесняется. В данном случае увеличение времени экзотермической выдержки эффекта не даёт.

Для устранения данного дефекта необходимо увеличить глубину вакуума и время выдержки при отрицательном давлении. Также в этом случае можно прибегнуть к комбинации продувки и вакуумирования. Если при осуществлении этих действий ситуация не изменится, необходимо вмешаться в процесс дозирования и смешивания: снизить на сколько это возможно отношение В/Т и увеличить внутреннюю температуру в массиве до 80–85 °C.

2. Отколы и трещины (рис. 3).





Механизм образования этих дефектов таков: пар конденсируется не только на поверхности материала, но и в толще массива. До тех пор, пока ячейки полностью не заполнены водой, разрушений не возникает, но как только начинает конденсироваться слишком много воды, внутри материала возникает значительное напряжение, которое в последствии приводит к разрушению.

Разрушения могут быть разной интенсивности: от тонких волосяных трещин до сильных поверхностных разрушений.

Итак, отколы появляются всегда, когда в автоклав подаётся слишком много пара за единицу времени. Поэтому при возникновении отколов и трещин следует увеличить длительность подъёма давления на первых двух этапах — от –0,5 до 0 бар и от 0 до 3 бар, соответственно. Если же при увеличении длительности подъёма давления результат не получен, необходимо изменить некоторые параметры.

Первый параметр — это температура массива до начала автоклавной обработки: чем холоднее массив, тем больше воды в нем конденсируется. Поэтому необходимо провести ряд мероприятий, исключающих остывание массива, а именно: предусмотреть наличие подогреваемых камер предавтоклавной выдержки, увеличить конечную температуру сырца, исключить сквозняки.

Второй и наиболее важный параметр — это количество воды, которое имеется в массиве при загрузке его в автоклав.

Когда материал формуется с высоким отношением В/Т, он содержит в себе очень много воды. Для автоклавной обработки на единицу массы воды сырца требуется четырёхкратное по массе количество пара. Избыток воды в сырце ведёт к увеличению расхода пара. В результате в материал начинает впитываться излишнее количество конденсата, что неминуемо приводит к откалыванию бетона. Единственный выход из такой ситуации — пересмотр существующих рецептур с целью снижения отношения В/Т.

Оптимальное отношение В/Т для изделий плотностью 350–500 кг/м3, производимых по литьевой технологии, должно находится в пределах 0,6–0,67.

Автор статьи надеется на отклик специалистов, занимающихся изготовлением изделий из ячеистого бетона автоклавного твердения, а также на то, что обобщение нашего опыта поможет дальнейшему совершенствованию производств, работающих по литьевой технологии и, как следствие этого, выпуску продукции более высокого качества.

Ячеистый бетон автоклавного твердения с торговой маркой AEROC – это поризованныйискусственный камень, полученный в результате автоклавной обработки ячеисто –бетонной смеси, состоящей из гидравлических вяжущих материалов тонкодисперсногокремнеземистого компонента и газообразующей добавки. Ячеистый бетонизготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие,известь и цемент, содержат СаО, который имеет решающее значение для процесса.Песок или зола входит в процесс SiO2. Из компонентов СаО, SiO2и H2O в автоклаве при воздействии высокого давления и высокойтемпературы образуется новый минерал – тоберморит (C4S5H5).

Образование новых минералов тоберморитовой структуры в следствии автоклавной обработки и возводит ячеистый бетон автоклавноготвердения (или газобетон) в совершенно другой ранг по сравнению с неавтоклавнымячеистым бетоном (пенобетоном). Автоклавная обработка обеспечивает значительноболее высокие физико – механические характеристики, такие как прочность иусадка при высыхании, для изделия из газобетона автоклавного твердения всравнении с изделиями из неавтоклавного пенобетона.

Газобетон автоклавного твердения является экологическичистым неорганическим строительным материалом и изготавливается из местногоотносительно не дорогого сырья. Это один из самых энергосберегающихстроительных материалов. Экономия достигается при его производстве,транспортировке, строительстве и эксплуатации зданий.

Современное высокопроизводительное технологическоеоборудование таких ведущих фирм как «Верхан», «Хесс», «Маза Хенке», «Итонг»,«Дюрокс» и другие позволяет не только производить качественную продукцию, но изначительно экономить энергетические и сырьевые ресурсы.

Сравнивая расходы энергоресурсов затрачиваемых наизготовление одного метра кубического строительных изделий, получившихнаибольшее распространение на строительном рынке Украины можно сделать вывод,что процесс производства изделий из газобетона автоклавного твердения являетсяэнергосберегающим (рис. 1).


Это в основном связано с тем, чтоиз одного кубического метра исходного сырья можно произвести шесть кубическихметров ячеистого бетона автоклавного твердения плотностью 400 кг/на метркубический, соответственно затраты на единицу продукции, связанные сподготовкой сырья и тепловой обработкой в сравнении с другими стеновымиматериалами, для ячеистого бетона автоклавного твердения значительно меньше.

Энергосбережение при производстве изделий зависит от того, насколько грамотно разработан технологический процесс производства, а также отточности соблюдения технической дисциплины на всех без исключениятехнологических переделах.

Наиболее энергоемкимитехнологическими процессами при производстве изделий из автоклавного газобетонаявляются: подготовка сырья (помол песка) и автоклавная обработка. На их долюприходиться до 75 % потребления предприятием энергоресурсов.

Зачастую на производственныхпредприятиях должным образом не уделяется внимание такой важной составляющей,как производительность мельницы и тонкость помола шлама, а ведь от того, чемвыше производительность, тем меньше время работы мельницы, электрическийдвигатель которой потребляет 500 кВт/час. Поэтому персонал лаборатории четкодолжен следить за гранулометрическим составом мелющих тел и за степеньюзаполнения мельницы мелющими телами.

Степень заполнения мельницыдолжна лежать в пределах 30-32% от общего внутреннего объема мельницы. (H/D где H – свободная высота над мелющими телами, D – внутренний диаметр мельницы).

Гранулометрический состав шаровнаходящихся в мельнице подбирается в зависимости от конструкции мельницы,используемой футеровки, гранулометрии используемого песка и гипса, а также оттребуемой тонкости помола.

Процесс автоклавной обработкиподразумевает собой использование обработанного пара и конденсата. Зачастую напредприятиях отработанный пар выбрасывают в атмосферу, а конденсат сливают вканализацию. На стадии проектирования и строительства предприятий необходимопредусматривать перепуск пара из автоклава в автоклав. При перепуске параэкономия газа составляет 4,5 метра куб на 1 метр куб выпускаемой продукции.

При автоклавной обработке прилитьевой технологии производства образуется конденсат в объеме 0,09 метра кубна 1 метр куб выпускаемой продукции с температурой 75-80 градусов С. Приправильном подходе данный конденсат и его тепло можно использовать обратно втехнологическом процессе. На (рис. 2) представлена схема использованияконденсата, а также его тепла, которая позволяет на 100 % использоватьконденсат обратно в технологии производства.


На примере работы завода ОАО«Аэрок Обухово» г. Обухов, Киевской области, можно рассмотреть две различныетехнологии формирования. Это технология формирования массива под воздействиемдинамических ударов и классическая литьевая технология производства.Предприятие ОАО «Аэрок Обухово» ранее это ОАО «Обуховский завод пористыхизделий» функционирует уже 15 лет. Выпуск изделий осуществляется наоборудовании «Универсал – 60» ударной технологии формирования смеси (рис. 3).


Применяется ударная площадкаЛВ-37. Основной вид выпускаемой ранее продукции- это изделия плотностью 600 кг/ метр куб с классом бетона по прочностиВ 2,0. С февраля 2009 года ОАО «Аэрок Обухово» полностью перешел на выпускизделий плотностью 500 кг/метр куб так же с классом бетона по прочности В 2,0.Однако используемая ударная технология не позволила нам достичь тех экономическихи технологических характеристик, которые мы имеем на других предприятиях AEROC, в том числе и назаводе в г. Березань (рис. 4), где применяется классическая литьевая технологияс использованием двуводного гипса (CaSO4 Х 2Н2О). Двуводный гипс – это добавка, позволяющаяуменьшить время набора сырцом транспортной (пластической) прочности, а такжеспособствует увеличению прочности готовой продукции при автоклавной обработке.



Поэтому на заводе ОАО «АэрокОбухов» были проведены экспериментальные роботы по использованию литьевойтехнологии с применением двуводного гипса.

Сравнительный анализ примененияударной и литьевой технологии производства при выпуске изделий плотностью 500кг/метр куб на ОАО «Аэрок Обухов».

Применяемые исходные сырьевыематериалы при литьевой технологии производства идентичны сырью, применяемомупри ударной технологии производства.

Характеристики сырья, разница врасходах сырьевых материалов и физико–механические характеристики продукциипредставлены в таблицах 1-6.



Сравнивая данные (табл. 1-6)можно сделать следующие выводы, что применяя литьевой способ формирования сиспользованием двуводного гипса вместо ударного, можно достичь следующихрезультатов:

  1. Улучшить качество выпускаемой продукции
    1. уменьшить разброс значений между верхом и низом формованного массива по плотности. При литьевой технологии (табл. 5) разброс значений по плотности составляет – 1,5 % или 8 кг/метр куб. При ударной технологии разброс значений составляет – 6% или 31 кг/метр куб
    2. уменьшить разброс значений по прочности между верхом и низом формованного массива. При литьевой технологии (табл. 5) разброс значений составляет 15% или 0,51 МПа. При ударной технологии (табл. 6) разброс значений составляет 30% или 0,79 МПа.
    3. увеличить прочность выпускаемой продукции. При литьевой технологии средняя прочность составляет 3,47 МПа. При ударной технологии средняя прочность составляет 2,92 МПа.

    Сравнивая расходы сырья, таблицы4, видно, что используя литьевую технологию производства с применениемдвуводного гипса можно снизить расходы: извести на 18% или 9 кг/метр куб,цемента на 12% или 14 кг/метр куб, алюминия на 25% или 0,15 кг, по отношению красходам сырья по ударной технологии.

    Если пересчитать в денежномвыражении, то по нынешним ценам экономия при выпуске предприятием ОАО «АэрокОбухов» 175000 метров куб в год составит порядка 3,5 млн. гривен в год. Понамеченному плану работ на 2009 г. Предприятие ОАО «Аэрок Обухов» перейдет навыпуск изделий плотностью 500 кг/метров куб, используя литьевую технологию ужес июня месяца.

    Вышеуказанные результаты несогласуются с опубликованными результатами предприятий, где применяется ударнаятехнология формования, например, некоторые заводы в Республике Беларусь. Даннаястатья не ставит целью подвергнуть сомнению эффективность способа ударногоформования смеси.

    Проведенные нами исследования,показали, что ударный способ формования не является универсальным для всехпредприятий, выпускающих ячеистый бетон автоклавного твердения, так как каждоепредприятие – это индивидуальный организм, на конечный результат работыкоторого очень существенное влияние оказывают как характеристики сырья и подборрецептур, так и уровень производственных процессов.

    Исходя, из всего вышеизложенного, можно сделать выводы, что грамотно подходя к выборутехнологического оборудования, технологии производства, технологическомупроцессу и схеме утилизации тепла, можно существенно снизить энергоемкость иматериалоемкость производства изделий из ячеистого бетона автоклавноготвердения.

    Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

    Автоклавная обработка является одной из важнейших операций при изготовлении изделий из ячеистого бетона. Её режимы напрямую влияют на такие качественные характеристики готового продукта, как морозостойкость, усадка при высыхании, прочность при сжатии, внешний вид изделий (отколы, трещины). Базовое понимание процессов, происходящих в автоклаве, важно как при полностью автоматическом регулировании работы автоклава, так и при ручном управлении.

    В данной статье мы кратко обобщим опыт, накопленный на заводах холдинга «Aeroc International» в автоклавной обработке.

    Процесс изготовления ячеистого бетона

    В этом разделе представлен краткий обзор всего процесса изготовления ячеистого бетона, поскольку определённые операции, входящие в этот процесс, напрямую влияют на поведение материала при автоклавной обработке.

    Ячеистый бетон изготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие — известь и цемент — содержат CaO, который имеет решающее значение для процесса. Песок или зола вводит в процесс SiO2. Из компонентов CaO, SiO2 и Н2О в автоклаве при воздействии высокого давления и высокой температуры образуется новый минерал — тоберморит (С4S5H5).

    Собственно, образование новых минералов тоберморитовой структуры и возводит ячеистый бетон автоклавного твердения (в просторечии — газобетон) в совершенно другой ранг по сравнению с неавтоклавным ячеистым бетоном («пенобетоном»). Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

    Химические процессы, происходящие на разных стадиях производства, можно представить в следующем виде:

    1. Выделение водорода на стадии образования пористой структуры в сырце:

    2. Образование гидроксидов и гидросиликатов на стадии набора сырцом пластической (транспортной) прочности:

    3. Образование новых минералов (тоберморита) на стадии автоклавной обработки:

    Для наиболее полного протекания реакций в процессе автоклавной обработки необходимо, чтобы исходные материалы имели достаточно тонкодисперсную структуру. На стадии помола к кремнезёмистому компоненту добавляется гипсовый камень, который служит, в первую очередь, для регулирования реакций в автоклаве, а также ускоряет набор сырцом необходимой пластической прочности.

    В смесителе сырьевые материалы перемешиваются, причём на качество перемешивания могут влиять как время смешивания, так и последовательность введения в смеситель сырьевых материалов. На выходе из смесителя должны быть обеспечены высокая гомогенность и определённая вязкость смеси.

    Один из важнейших параметров — температура смеси на выходе из смесителя, которая очень сильно влияет на весь дальнейший процесс. При вспучивании газомассы и наборе сырцом необходимой для резки пластической прочности температура в массиве растёт. Огрубляя, можно сказать, что рост температуры продолжается примерно 1–1,5 ч; дальнейший прирост составляет лишь 1–3 °C. Однако температура в массиве распределяется неравномерно, она уменьшается в слоях, которые контактируют с бортами заливочной формы и воздухом.

    Так как температура массива и её распределение являются важными для некоторых этапов автоклавной обработки, хотим обратить особое внимание на то, что все заводы «Aeroc» оснащены тепловыми тоннелями, которые препятствуют охлаждению массивов через стенки заливочных форм. Кроме того, заливочные формы первого цикла всегда доводятся в тепловых тоннелях до температуры, примерно соответствующей температуре заливки.

    При резке массивов большое внимание уделяется отсутствию сквозняков, особенно — в зимнее время. Разрезанные массивы также находятся в тепловых тоннелях, которые препятствуют понижению температуры поверхности сырца, так как передача тепла в ячеистый бетон при автоклавной обработке происходит тем быстрее, чем выше его температура при загрузке в автоклав.

    Этапы автоклавной обработки

    При разработке режимов автоклавной обработки и привязке их к конкретному технологическому циклу необходимо учесть массу факторов и особенностей того или иного производства: качество сырьевых материалов, параметры смеси (температура и отношение В/Т), номенклатура выпускаемой продукции (размеры, наличие армирования, плотность ячеистого бетона), расположение запариваемых массивов в автоклаве, условия и время выдержки перед автоклавной обработкой и другое.

    Автоклавная обработка принципиально разбивается на четыре этапа:

    (1) подготовка ячеистого бетона к подъёму давления;

    (2) подъём давления;

    (3) изотермическая выдержка ячеистого бетона при определённых температуре и давлении;

    (4) сброс давления и подготовка изделий к выгрузке из автоклава.

    Первый этап может включать (вместе или раздельно) следующие мероприятия:

    1. Продувка или предварительный подогрев изделий без давления.

    2. Предварительный подогрев изделий при давлении.

    Целью первого этапа является оптимальная подготовка сырца и среды в автоклаве ко второму этапу процесса — подъёму давления.

    Из опыта нашей работы следует, что для изделий, внутренняя температура которых менее 80 °C, наиболее предпочтительным из вышеуказанных мероприятий первого этапа является вакуумирование.

    За счёт снижения давления в автоклаве вода, находящаяся в материале, начинает кипеть. Кипение воды начинается в самой теплой части массива, а именно — во внутренней его области. При дальнейшем снижении давления кипение продвигается от внутренней области массива наружу, что приводит к полному удалению воздуха из материала. При этом сам материал разогревается, температура по толще массива выравнивается. Необходимый вакуум зависит от конечной температуры массива и, как правило, составляет 0,5 бар. Максимальное разряжение достигается через 25–30 мин и далее поддерживается в течение 15–25 мин. Вакуумирование необходимо производить при горячем автоклаве (температура стенки автоклава должна быть не менее 80 °C). Эту температуру всегда легко сохранить в условиях постоянного производства. В противном случае перед началом процесса автоклавной обработки автоклав необходимо предварительно разогреть без продукции.

    Причинами плохого вакуумирования могут быть неисправности, связанные с вакуумной задвижкой, системой автоматического управления, а также неудовлетворительное функционирование вакуумного насоса.

    Второй этап – подъём давления – заключается в разогреве материала до температуры изотермической выдержки (как правило, 190–193 °C). Разогрев происходит, главным образом, благодаря конденсации горячего пара на относительно холодной поверхности массивов, температура которых в начале процесса ниже температуры насыщенного пара. Образующийся конденсат переносит тепло в ячеистый бетон. Конденсация воды из пара может происходить как в виде капель, так и в виде закрытых водяных плёнок. В какой форме это происходит, зависит, в первую очередь, от разности температур между паром и ячеистым бетоном. Образование закрытых плёнок препятствует теплопередаче, что крайне нежелательно.

    Для получения качественных изделий подъём давления следует проводить в три этапа:

    (1) от –0,5 бар до 0 бар — 30–45 мин;

    (2) от 0 бар до 3 бар — 30–45мин;

    (3) от 3 бар до 12 бар — 65 мин.

    Если на изделиях появляются отколы и трещины, то подъём давления на первых двух этапах необходимо вести медленнее. Однако если увеличение времени каждого из этапов до 60 мин не даёт должного эффекта, нужно вмешаться в процесс заливки: изменить параметры смеси.

    При достижении ячеистым бетоном температуры 150 °C начинается ускоренный экзотермический разогрев массивов за счёт энергии, освобождающейся при образовании гидросиликатов. Особое внимание следует обратить на то, что остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением. Особенно это характерно для армированных изделий и бетонов, плотность которых более 500 кг/м3.

    Изотермическая выдержка проводится в течение определённого времени при заданных давлении и температуре, которые обеспечивают достаточно глубокое протекание химических реакций образования новых минералов.

    Оптимальная температура изотермии при производстве ячеистого бетона составляет 190–193 °C, рабочее давление в автоклаве — 11,5–13 бар. Время выдержки зависит как от номенклатуры продукции (мелкоштучные блоки или армированные изделия), так и от её плотности. Для плотности 350–500 кг/м3 оптимальное время выдержки составляет 360 мин при давлении 12 бар.

    Если сырьевые материалы подобраны правильно, а рецептура рассчитана корректно, в автоклаве на стадии выдержки происходит самопроизвольный рост давления без подачи в автоклав пара.

    Сброс давления должен проводиться плавно. Продолжительность сброса давления зависит в основном от номенклатуры продукции и от плотности изделий. Для плотностей 350–500 кг/м3 оптимальное время сброса, по нашему опыту, составляет 90 мин. Для изделий плотностью 600 кг/м3 и более, а также для армированных изделий, продолжительность сброса увеличивается, а сам сброс проводится ступенчато с разными градиентами.

    Рис 1. Изображение процесса в виде графика

    Причины дефектов в материале, которые возникают при автоклавной обработке и пути их устранения

    1. Не затвердевшие участки массива (рис. 2).

    Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае, когда при автоклавной обработке температура бетона в этих областях недостаточна для образования гидросиликатов. Причиной может послужить недостаточность вакуумирования, в результате которой вода в этих зонах не закипает и воздух не вытесняется. В данном случае увеличение времени экзотермической выдержки эффекта не даёт.

    Для устранения данного дефекта необходимо увеличить глубину вакуума и время выдержки при отрицательном давлении. Также в этом случае можно прибегнуть к комбинации продувки и вакуумирования. Если при осуществлении этих действий ситуация не изменится, необходимо вмешаться в процесс дозирования и смешивания: снизить на сколько это возможно отношение В/Т и увеличить внутреннюю температуру в массиве до 80–85 °C.

    2. Отколы и трещины (рис. 3).

    Механизм образования этих дефектов таков: пар конденсируется не только на поверхности материала, но и в толще массива. До тех пор, пока ячейки полностью не заполнены водой, разрушений не возникает, но как только начинает конденсироваться слишком много воды, внутри материала возникает значительное напряжение, которое в последствии приводит к разрушению.

    Разрушения могут быть разной интенсивности: от тонких волосяных трещин до сильных поверхностных разрушений.

    Итак, отколы появляются всегда, когда в автоклав подаётся слишком много пара за единицу времени. Поэтому при возникновении отколов и трещин следует увеличить длительность подъёма давления на первых двух этапах — от –0,5 до 0 бар и от 0 до 3 бар, соответственно. Если же при увеличении длительности подъёма давления результат не получен, необходимо изменить некоторые параметры.

    Первый параметр — это температура массива до начала автоклавной обработки: чем холоднее массив, тем больше воды в нем конденсируется. Поэтому необходимо провести ряд мероприятий, исключающих остывание массива, а именно: предусмотреть наличие подогреваемых камер предавтоклавной выдержки, увеличить конечную температуру сырца, исключить сквозняки.

    Второй и наиболее важный параметр — это количество воды, которое имеется в массиве при загрузке его в автоклав.

    Когда материал формуется с высоким отношением В/Т, он содержит в себе очень много воды. Для автоклавной обработки на единицу массы воды сырца требуется четырёхкратное по массе количество пара. Избыток воды в сырце ведёт к увеличению расхода пара. В результате в материал начинает впитываться излишнее количество конденсата, что неминуемо приводит к откалыванию бетона. Единственный выход из такой ситуации — пересмотр существующих рецептур с целью снижения отношения В/Т.

    Автор статьи надеется на отклик специалистов, занимающихся изготовлением изделий из ячеистого бетона автоклавного твердения, а также на то, что обобщение нашего опыта поможет дальнейшему совершенствованию производств, работающих по литьевой технологии и, как следствие этого, выпуску продукции более высокого качества.

    Cтатья предоставлена журналом «Популярное бетоноведение»

    Журнал «Популярное Бетоноведение» — всегда свежая и профессиональная информация о производстве и применению бетонов и других строительных материалов, добавках, оборудовании и многом другом.

    Издание выходит при поддержке Научно-Технического общества строителей Санкт-Петербурга. Распространяется в России, СНГ, за рубежом. Журнал рассчитан на широкий круг читателей — строителей, технологов, проектировщиков.


    Автоклавный бетон – строительный материал, содержащий в себе все положительные оценки и современные достижения, которых обычно добиваются сочетанием различных материалов. Автоклавирование увеличивает прочность и надежность блоков, что разрешает достичь высоты постройки не менее трех этажей. Используется в стеновых конструкциях, перекрытиях и в различных перегородках. Ячеистая структура дает отличную звукоизоляцию помещений и создает улучшенную теплоизоляцию.

    Газобетон автоклавного твердения состоит из цемента, извести, воды и песка, что делает материал нетоксичным, негорючим, невозможным для образования плесени и различных грибков, а пористая структура помогает сохранить комфортный микроклимат в помещениях.

    Что собой представляют?

    Газобетон или как его еще называют автоклавный ячеистый бетон, обладает надежностью, качественностью и долголетием. Прочность этого строительного материала проверена временем. Применение автоклавных ячеистых элементов актуально при строительстве различных зданий и сооружений. Благодаря им возводятся стеновые перегородки, несущие конструкции и другие внутренние части домов.

    Основным преимуществом ячеистого блока является его способность сохранять тепло, а также выделяют следующие достоинства присущие автоклавному бетону:

    • Пожаробезопасность. Благодаря пористой структуре материала, осуществляется барьер для распространения огня.
    • Звукоизоляция. Ячеисто-пористая структура, которой обладают автоклавные изделия, улучшают звукоизоляцию материала.
    • Теплоизоляция. Воздух в порах, который присущий автоклавным блокам, позволяет сохранять тепло, обеспечивать комфортное проживание в помещениях и сокращать расходы на отопительных приборах.
    • Легкость обработки. Ячеистые блоки с легкостью поддаются распилу, сверлению, строганию.
    • Экономичность. Благодаря этому материалу осуществляется экономия на постройку, например, стеновые конструкции из газобетона обойдутся в разы дешевле кирпичных стеновых элементов.
    • Точность геометрических размеров и ровная поверхность позволяет сэкономить на отделке стен.
    • Скорость монтажа при работе с ячеистым бетоном.

    К недостаткам материала относят:

    • Низкая прочность в ячеистой структуре приводит к растрескиванию стен.
    • Влагопоглощение. Это свойство требует установки вентиляционного зазора в блоках.
    • Обязательное применение крепежного анкера «бабочка».



    Крепежный анкер «бабочка».
    За счет большого объема пор в материале, снижается его плотность. Производство ячеистого бетона бывает автоклавным и неавтоклавным. Твердение по автоклавной технологии осуществляется под давлением и при высокой температуре в печах-автоклавах. Неавтоклавное производство подразумевает естественное твердение с применением теплового воздействия атмосферного давления.

    Вернуться к оглавлению

    Показатель теплопроводности

    Главным преимуществом ячеистого бетона является теплопроводность. За счет пористой структуры обеспечивается теплоизоляция, это позволяет экономить на отоплении.

    В строении из такого материала (внутри помещения) сохраняется прогретый воздух, а если правильно выполнены внутренняя и наружная отделка, показатели проводимости тепла удается снизить максимально.

    У пенобетона D800 коэффициент теплопроводности колеблется от 0,09 до 0,25 Вт/(м*°С). Такие показатели гарантируют, что температура в помещении будет сохраняться независимо от погодных условий.

    Такие свойства позволяют использовать материал в промышленном и частном строительстве при возведении зданий, однако чем выше стены, тем более прочный блок требуется. Одновременно снижаются показатели теплопроводности, стену приходится делать толще.

    Виды и характеристики

    Используя различные технологические процессы, различают пенобетон и газобетон. Они имеют одинаковые свойства, но различаются по технологии изготовления. Бетон автоклавного твердения подразделяется на типы в зависимости от своей объемной массы:

    • Тяжелые бетоны. Применяются для надежных опор или несущих конструкций.
    • Легкие бетоны. Используются в постройках, где требуется легкость материала и теплоизоляционные характеристики.
    • Средние бетоны. С помощью их возводятся ограждающие элементы и малоэтажные постройки.

    Вернуться к оглавлению

    Газобетон

    Разновидностью ячеистого бетона является газобетон, который представляет собой искусственный камень с равномерно распределенными по всему объему порами. Производится автоклавный газобетон на заводе и не содержит в себе химических добавок.

    В состав газобетона входят: песок, цемент, известь, вода, гипс и алюминиевая паста. Образование пор происходит за счет выделения водорода. После твердения газобетон делят на блоки, соблюдая одинаково ровные размеры. Геометрия газобетонных элементов предотвращает зазоры при их укладке. Автоклавный газобетон достигает максимальных прочностных характеристик в автоклаве, где на него действуют высокие температуры и давление. Газобетон обладает стабильностью качества, прочность, экологичностью, водопоглощением и теплоизоляцией.

    Вернуться к оглавлению

    Газосиликат



    Газосиликатные блоки являются разновидностью ячеистого материала, в состав которых входят известь, песок мелкой фракции, вода и порообразующие добавки. Изготавливаются газосиликаты по государственным стандартам, используя автоклавную технологию.

    Процесс приготовления газосиликатной смеси состоит в замешивании компонентов в определенных пропорциях и порядке. Смешивают ингредиенты до образования густой массы, которую потом разливают в подготовленные емкости. Твердение происходит благодаря химической реакции извести и алюминиевой пудры, в результате которой образуется пористая структура изделия.

    Следующим этапом является резка изделий на блоки нужного предназначения. После нарезки строительных элементов их погружают в автоклав для обработки паром и высоким давлением. Далее газосиликатные изделия оставляют для застывания и упаковки.

    Вернуться к оглавлению





    Преимущества блоков

    В данный момент газобетонные блоки лидируют на рынке строительных материалов, являясь самым экономичным, удобным и перспективным вариантом для строительства. Своими прочными характеристиками этот материал обязан ячеистой структуре и обработке при помощи автоклава при высоком давлении. Газобетон относят к конструкционно-теплоизоляционным ячеистым материалам.

    Так, обладая сравнительно невысокой плотностью, до 500 кг/куб.м, этот материал обладает чрезвычайно высокой степенью прочности, от двух до четырех мПа. Такой прочности вполне достаточно для сооружения из газобетона несущих стен высотой до пяти этажей. Учитывая эксплуатационную влажность, которой обладает газоблок, и расчетную теплопроводность всего в 0,1 Вт/м, он в пять раз теплее, чем шлакоблок, в шесть раз теплее, чем керамический кирпич, и практически в два раза теплее, чем ракушняк. Получается, что газобетонные блоки являются одним из самых теплых однородных материалов, известных на данный момент.

    Используя в качестве строительного материала один только газоблок, можно создать энергосберегающие стены и обойтись без применения дополнительного утепления.


    График зависимости прочности газобетона от его влажности.

    Производят газобетонные блоки из кварцевого песка, поддающегося тонкому помолу, цемента самых высоких марок без различных примесей, негашеной измельченной извести, воды и гипсового камня.

    Одним из наибольших достоинств газобетонных блоков автоклавного твердения является их максимально точная геометрия, которая при кладке не допускает создания мостиков холода.

    Еще одним неоспоримым плюсом ячеистых блоков является их долговечность, по сравнению с другими синтетическими материалами и утеплителями типа пенополистирола либо каменной ваты.

    Благодаря своей идеальной геометрии, укладка автоклавного газобетона не представляет никаких сложностей. Так, для укладки блоков можно использовать даже клей (чаще всего он продается в мешках в сухом виде и готовится при добавлении воды).

    Низкий вес и большие размеры блоков из газобетона позволяют сократить расходы на строительных материалах, время, требующееся на строительство, и предполагают более практичное их использование.


    Схема производства газобетона.

    Ввиду того что толщина кладочного шва никогда не превышает три миллиметра, в стене отсутствуют мостики холода и исключается возможность промерзания.

    Использование этого материала значительно уменьшает уровень трудоемкости работ и расход материалов. Можно значительно сэкономить на клее и проведении штукатурных работ ввиду идеальной геометрической поверхности данных блоков.

    Благодаря своей пористой структуре, газобетонные блоки несут гораздо меньшую нагрузку на фундамент по сравнению с другими строительными материалами. Из-за сравнительной легкости обработки газобетонных блоков, зданию можно придать особой архитектурной выразительности, просто подпилив либо обрезав лишние участки блока.


    Резать газобетонные блоки можно с помощью ручной пилы по газобетону и угольника для обеспечения точности и соблюдения прямых углов.

    Многие строительные компании останавливают свой выбор на использовании автоклавного газобетона из-за высокой экологичности этого материала. Во время изготовления газоблок не происходит никакого отрицательного воздействия на окружающую среду. Стоит обратить внимание на статистические данные. Так, согласно коэффициенту экологичности ячеистого бетона в 2,0, он абсолютно безопасен для человека. Многие марки этого материала оснащены специальными экологическими сертификатами.

    Области применения

    Благодаря ячеистому бетону возможно создание армированных плит для стеновых элементов, а именно: перекрытий, перегородок, несущих конструкций. Также пористая структура в бетоне обеспечивает теплоизоляцию помещений. Газобетонные изделия применяются в местах с повышенной сейсмичностью. Их зачастую применяют в районах с постоянными природными катастрофами. Легкость материала и относительно высокая прочность уменьшает нагрузку на фундамент зданий и сооружений.

    Применяются газобетоны при строительстве домов, где важно учитывать преимущество блоков, а именно их способность поддаваться различным видам обработки: распилу, строганию, сверлению. Используются газосиликатные изделия для построек с большим сроком службы, ведь материал обладает способностью увеличивать со временем свои прочностные характеристики.

    Вернуться к оглавлению

    Водопоглощение и морозостойкость

    Водопоглощение является главной характеристикой блоков из ячеистых материалов, от нее зависит морозостойкость, т. к. замерзшая внутри блока вода начинает разрушать структуру материала. Гигроскопичность газобетона выше, он легче насыщается водой.

    Показатель морозостойкости газобетона равняется F35, что для российского климата считается неудовлетворительным. Чтобы устранить такой недостаток, необходимо использовать для штукатурки составы, имеющие низкий показатель водопоглощения.

    Стены рекомендуется отделывать сайдингом (пластиковым или деревянным и другими аналогичными отделочными материалами). Плотность ячеистого бетона определяется объемом ячеек, чем она меньше, тем больше пустотность. Это зависит от структуры материала, поскольку его поры соединены выходящими на поверхность тонкими каналами. У пенобетона поры замкнутые, по этой причине влагу он пропускает хуже, а показатель морозостойкости равен F45.

    На показатель водопоглощения влияет тип вяжущего компонента (разные вещества дают разные данные). Учитывая, что показатель водопоглощения у данных строительных изделий достаточно высокий, их можно использовать только в зданиях, где влажность воздуха не превышает 55%.

    Технология производства



    Загрузка газобетонных блоков в автоклав.
    Технологический процесс заключается в отливке изделий в различные емкости. Смесь состоит из сухих компонентов и воды. Изготовление газобетона не возможно без песчаного шлама и вяжущих компонентов. Придерживаясь определенных пропорций, сухие ингредиенты погружают в бетономешалку для тщательного перемешивания. Для соединения компонентов требуется около пяти минут, после чего смесь вливают в воду с добавлением алюминиевой пудры. Смесь перемешивается и заливается в металлические емкости.

    Важно разлить раствор на половину формы, так как он в процессе застывания способен увеличиться в размере. Раствор, вышедший за края емкости, срезают проволочной струной. Чтобы ускорить схватывание и твердение раствора, в процессе изготовления смеси используют подогретую воду до сорока градусов. После разливки раствора, заполненные емкости оставляют в покое до полного их схватывания.

    Вернуться к оглавлению

    Усадка

    Усадка — это изменение геометрической формы конструкции под влиянием нагрузки на изгиб. Для пенобетона показатель усадки достигает 3мм/м, по этой причине не рекомендуется использовать для строительства многоэтажных зданий даже полнотелые блоки из пенобетона.

    Чтобы усадка прошла, специалисты рекомендуют в течение 7-8 месяцев не оштукатуривать стены, возведенные из пенобетона, чтобы избежать осыпания штукатурки.

    Блоки из ячеистых бетонов стеновые мелкие получают из смеси песка, извести, цемента, пластификатора, порообразователя и других добавок, улучшающих свойства материала.

    Блоки из газобетона почти не подвергаются усадке (ее показатель 0,5 мм/м), поэтому можно возводить стены из данного материала в несколько этажей. Кроме того, газобетонные стены можно штукатурить сразу, т. к. у этого материала высокая гигроскопичность и при отсутствии дополнительного покрытия он легко повреждается.

    Ячеистый бетонный блок является хорошим строительным материалом, если изготовлен качественно, а отделка здания выполнена грамотно.



    Автоклавный газобетон – искусственный материал, хорошо зарекомендовавший себя в сфере строительства зданий промышленного и жилого назначения. Он является разновидностью ячеистого бетона. Поскольку материал становится все более популярным при возведении частных строений, следует знать, каковы его характеристики, что такое автоклавирование, отличия автоклавного бетона от неавтоклавного, их плюсы и минусы.

    Рисунок 1. Автоклавный газобетон

    Изготовление своими руками

    Ячеистый бетон вполне можно приготовить и самостоятельно. Решается задача несколькими путями.

    Неавтоклавный газобетон

    Оборудование включает подробную инструкцию и диск, где объясняется и технология изготовления, и принципы работы аппаратов. Стоимость аппарата – 57–58 тыс. р.

    Пенобетон

    Пенобетон приготавливается по несколько иной технологии.

    Приобретение оборудования имеет смысл тогда, когда затевается достаточно большое строительство – не гараж и не хоз постройка. При небольшом объеме работы выгоднее взять технику в аренду.

    О линии производства для изготовления ячеистого бетона расскажет видео ниже:


    Теплопроводность газобетонных блоков

    Химическая реакция при смешивании извести и алюминиевой пудры в цементном растворе происходит с выделением водорода. В процессе автоклавной сушки получают газобетон с равномерно распределенными открытыми ячейками неодинаковой формы. Пористая структура материала определяет его основные физические характеристики: небольшой вес при крупных размерах, паропроницаемость, изоляционные свойства. Низкая теплопроводность газобетона зависит от его плотности. Чем больше воздушных пор в объеме, тем медленнее предается тепловая энергия и дольше сохраняется комфортная атмосфера внутри помещения.

    Теплотехнические свойства газоблоков

    Ограждающие конструкции являются источником теплопотерь во время отопительного сезона. Поэтому при строительстве и теплоизоляции частных коттеджей используют пористые материалы. Газобетон в зависимости от плотности, которую измеряют в кг/м3, производят различных марок:

    • D300–D400 применяют в качестве теплоизоляции;
    • D500–D900 используют, как утеплитель и при одноэтажном строительстве;
    • D1000–D1200 применяют в несущих конструкциях высотных зданий.

    Марка D600 указывает, что в кубометре пористого бетона содержится 600 кг твердых компонентов, которые занимают примерно треть объема. Воздух в ячейках нагревается намного медленнее и является естественным препятствием для передачи тепла. Значит, чем меньше плотность монолита, тем лучше его изоляционные свойства. Теплопроводность газоблока в сравнении с другими материалами отличается низкими значениями:

    НаименованиеКоэффициент теплопроводности, Вт/м °C
    Плотность, кг/м3
    D300D400D500D600
    Газобетон при влажности 0%0,0720,0960,1120,141
    5%0,0880,1170,1470,183
    Пенобетон при влажности 0%0,0810,1020,1310,151
    5%0,1120,1310,1610,211
    Дерево поперек волокон при влажности 0%0,0840,1160,1460,151
    5%0,1470,1810,1830,218

    Пеноблоки имеют сходную структуру с газобетоном, но отличаются замкнутыми ячейками и высокой плотностью. Вспененный бетон застывает в формах и имеет неточную геометрию по сравнению с другими стройматериалами. Поэтому как теплоизоляцию чаще используют газосиликатные блоки.

    Дерево считается самым экологичным материалом для строительства комфортного, «дышащего» жилища с наиболее благоприятными условиями микроклимата. Но теплопроводность стен такого дома выше газобетонных. Ячеистые блоки обладают паропроницаемостью, огнеупорностью, биостойкостью и при надежной гидроизоляции с успехом заменяют древесину. Тщательнее всего необходимо оградить фундамент и цоколь, чтобы пористая структура не натягивала влагу из грунта. Для этого использую битум и рубероид.

    Теплопроводность кирпича и газоблока

    Традиционный строительный материал для возведения частных домов – кирпич отличается прочностью, морозостойкостью и долговечностью. Такие показатели возможны при высокой плотности искусственного камня. По сравнению с газоблоком кирпичные стены делают многослойными. Применение «сэндвич» технологии позволяет прокладывать теплоизоляцию между наружной и внутренней кладкой.

    Теплоизолирующие свойства ограждений зависят от их толщины. Чем массивнее стены, тем медленнее будет охлаждаться внутреннее пространство дома. При проектировании толщины ограждения следует учитывать мостики холода – слой цементного раствора между элементами кладки. Блоки монтируют с помощью пазовых замков и специального клея. Такой способ позволяет сократить до минимума тепловые потери. Чтобы сэкономить средства на закупке стройматериалов, необходимо знать характеристики сборных конструкций стандартной толщины:

    НаименованиеТолщина наружной стены
    12 см20 см24 см30 см40 см
    Теплопроводность, Вт/м °C
    Кирпич белый7,514,523,753,122,25
    красный6,754,053,372,712,02
    Газоблок D6001,160,720,580,460,35
    D5001,010,610,520,420,31
    D4000,820,510,410,320,25

    Благодаря низкой теплопроводности в южных районах частные коттеджи строят из газобетона D400 толщиной 20 см, в средней полосе используют пористые элементы D400 с шириной 30 см или D500 – 40 см. В условиях севера возводят многослойные стены из конструкционных и изоляционных блоков. Благодаря хорошим теплотехническим характеристикам газобетоном утепляют дома из кирпича, железобетона, пеноблоков.

    Приложение Б (обязательное). Метод определения морозостойкости ячеистых бетонов

    Б.2 Подготовка к испытанию

    Б.2.1 Испытания на морозостойкость проводят при достижении ячеистым бетоном прочности на сжатие, соответствующей его классу по прочности на сжатие.

    Б.2.3 Число образцов для испытания ячеистого бетона на морозостойкость должно быть не менее 24:

    12 — основные, подвергающиеся замораживанию и оттаиванию, для определения потери прочности на сжатие после испытания;

    6 — контрольные, не подвергающиеся замораживанию и оттаиванию, для определения потери прочности на сжатие;

    3 — основные, подвергающиеся замораживанию и оттаиванию, для определения потери массы после испытания;

    3 — контрольные, не подвергающиеся замораживанию и оттаиванию, для определения потери массы.

    Б.3 Проведение испытания

    Б.3.2 Температуру воздуха в морозильной камере следует измерять в центре ее рабочего объема в непосредственной близости от образцов.

    Б.3.3 Продолжительность одного цикла замораживания при установившейся температуре в камере минус (18±2) °С должна быть не менее 4 ч, включая время снижения температуры от минус 16 °С до минус 18 °С.

    Б.4 Обработка результатов испытания

    Б.4.1 Относительное снижение прочности бетона , %, вычисляют по результатам испытания на сжатие основных образцов после заданного числа циклов переменного замораживания и оттаивания и контрольных образцов в возрасте, соответствующем числу циклов испытания на морозостойкость, по формуле

    где — среднее значение прочности основных образцов после заданного числа циклов переменного замораживания и оттаивания, МПа;

    — среднее значение прочности контрольных образцов в возрасте, соответствующем числу циклов испытания на морозостойкость, МПа.

    Б.4.2 Относительную потерю массы , %, вычисляют по результатам определения массы основных образцов после заданного числа циклов переменного замораживания и оттаивания и контрольных образцов в возрасте, соответствующем числу циклов испытания на морозостойкость, по формуле

    где — среднее значение массы основных образцов, высушенных до постоянной массы, г;

    Кавабанга! Керамзитобетонные блоки (керамзитоблоки): технические характеристики, плюсы и минусы

    — среднее значение массы контрольных образцов, высушенных до постоянной массы, г.

    Б.4.5 Исходные данные и результаты испытаний основных и контрольных образцов должны быть занесены в журнал испытаний по форме, приведенной в приложении В.











    Что такое автоклавирование и для чего оно нужно

    Автоклавирование обеспечивает ускоренное твердение бетона. Отличие стройматериала от аналогов – более высокая прочность.

    Автоклавный газобетон подвергается изменениям на молекулярном уровне. В результате обработки происходит образование нового минерала тоберморита. Он имеет уникальные свойства. Главная особенность, чем отличается автоклавный бетон от неавтоклавного, заключается в том, что первый является искусственно получаемым камнем, а второй – застывшим песчано-цементным раствором.

    Газобетонные блоки автоклавного твердения имеют особые характеристики: состав, эксплуатационные особенности, физико-технические параметры. По большинству показателей автоклавный и неавтоклавный бетон различны.




    Однородность

    При производстве автоклавного газобетона газообразование происходит одновременно во всем объеме материала. Параллельно с газообразованием происходит отверждение. По мере роста массива на опалубку от закрепленных на ней специальных вибраторов периодически подается импульс, который «встряхивает» массив, выгоняя из него крупные пузыри газа и исключая наличие раковин и воздушных мешков в готовых блоках. В результате поры одного размера и равномерно распределены по всему объему материала. Строительные блоки из автоклавного газобетона получают в результате разрезания большого массива, что гарантирует идеальное и одинаковое качество всех блоков.

    Неавтоклавный газобетон и пенобетон

    получают введением в бетонную массу пены, газообразователей и перемешивая ее. В итоге часто случается, что
    пузырьки, как более легкие компоненты смеси, всплывают вверх, а более тяжелые наполнители оседают вниз
    . Получается
    неравномерное распределение пор в блоке
    , и за счет этого нет возможности добиться единых характеристик на разных блоках. Технология производства неавтоклавного газобетона исключает возможность встряхивания массива, поэтому наличие пузырей диаметром 50-70 мм – обычное дело. В таком материале часто возникают более холодные участки стены с выпадением конденсата на поверхности, а также трещины – в местах ослабления кладки крупными пузырями воздуха.


    Как производится автоклавный газобетон?

    В 1929-ом автоклавный газобетон начали производить чехи. Предприятие мощностью 15 000 кубов в год расположилось в городе Иксхульт. Чехи выбросили из формулы Эриксона 10% бетона, производя блоки только из извести и кремнезема. Материал назвали «Итонгом».

    Популярный ныне газобетон из кремнезема и портландцемента появился в 1934-ом. Материал назвали «Сипорексом». Параллельно, приступили к изготовлению простого газобетона. Его формула, как и у автоклавного, сложена из:

    -песка мелкой фракции

    -портландцемента марок «М-300» и «М-400»

    -пудра алюминия с 95-процентным содержанием металла


    Необязательной составной являются полимеры, пластифакторы. Их добавляют для придания бетону специфических свойств и улучшения основных. Реакция вспенивания героя статьи запускается известью и порошком алюминия.

    Последний добавляют после замешивания цементной смеси. Интенсивность реакции подстегивают вибрацией емкости с составом. Выделяется углекислый газ. Он и поризует материал, после чего тот схватывается.

    Поры героя статьи закрыты, словно соты. Различаются обычный и автоклавный газобетоны лишь способом твердения. Без автоклава блоки схватываются естественным путем. Автоклавные достаются из форм полузастывшими. В таком состоянии плиты режут по заданным размерам. Потом, блоки направляются в автоклав.

    Читайте также: