Аварийное состояние кирпичной кладки

Обновлено: 18.05.2024

Обследование стен зданий – это комплекс мероприятий направленных на определение категории технического состояния и работоспособности объекта, выявление дефектов и разработку мер по их устранению. Главные задачи обследования – убедиться в возможности безопасной эксплуатации объекта или определить степень аварийного состояния и необходимость ремонта, либо замены конструкции.

В каких случаях необходимо обследование зданий?

Комплексное обследование зданий может потребоваться в следующих ситуациях:

  • перед проведением капитального ремонта, перепланировки, реконструкции;
  • для получения актуальных сведений о текущем состоянии конструкции;
  • при обнаружении видимых деформаций и дефектов;
  • во время страхования сооружения;
  • в случае утери технической документации на объект;
  • для определения качества выполненных строительно-отделочных работ;
  • перед покупкой или продажей объекта;
  • при оформлении смены целевого назначения здания.

Согласно ГОСТ Р 31937-2011 строительная экспертиза стен зданий должна проводиться не позже двух лет после ввода в эксплуатацию, и в дальнейшем не реже одного раза в десять лет при нормальных условиях эксплуатации или один раз в пять лет при сложных окружающих условиях. Кроме того, обследование трещин в стенах может быть организовано внепланово при обнаружении деформаций и дефектов, после аварийных бедствий, по желанию собственника и по назначению органов, осуществляющих надзор за объектами капитального строительства.

Какие работы выполняются при обследовании стен?

В соответствии с положениями СП 13-102-2003 и ГОСТ 31937-2011, обследование подпорных стен зданий и сооружений проводится в несколько этапов, во время которых используют разнообразные методы. В зависимости от специфики, работы можно поделить на три категории: аналитические, визуальные и инструментальные.

Аналитические работы

Аналитические работы включают в себя изучение проектно-технической документации обследуемого объекта с целью изучения его конструктивных особенностей и выявления возможных причин дефектов. Как правило, в перечень пакета документов, необходимого для грамотного анализа, входит:

  • технический паспорт объекта;
  • общестроительные чертежи с отображением сделанных конструктивных изменений;
  • акт приемки здания в эксплуатацию с результатами приемочных испытаний и перечнем недочетов;
  • журнал эксплуатации сооружения, авторского надзора, производства строительных работ;
  • отчет геодезических и геологических изысканий;
  • заключение периодических осмотров здания и ранее выполненных обследований.

Во время анализа устанавливается спецификация и назначение объекта, наименование организации, разрабатывающей проект и год завершения возведения здания. Также, изучаются конструктивные и монтажные схемы, геометрические параметры конструктивных элементов зданий, расчетные и проектные нагрузки.

Визуальные исследования

Визуальные методы используют на первом этапе обследования и позволяют определить общее состояние здания по искажению геометрии фасадов и характеру дефектов. Специалисты выявляют дефекты и повреждения только по внешним признакам:

  • фиксируют их и проводят необходимые измерения;
  • выявляют крупные аварийные участки при их наличии;
  • уточняют схему точек выработок для инструментального обследования;
  • осуществляют осмотр прилегающих к зданию территорий.

Также, визуальное обследование наружных стен проводят с целью оценки вертикальной планировки и изучения принципа организации отвода поверхностных вод.

Инструментальные исследования

Анализ документации и визуальный осмотр не дают исчерпывающей информации об актуальном состоянии объекта, прочности конструкции и надежности. Для получения детальных результатов необходимо использование инструментальных методов, которые позволят принять обоснованные решения на проведение определенных работ.

Главной целью таких исследований, является определение технического состояние здания и прогнозирование изменений его эксплуатационных характеристик по истечению времени.

Наибольшую информативность при обследовании стен зданий можно получить при использовании следующих инструментальных методов:

  • Теодолитная съемка в комбинации с нивелированием и фотограмметрией. Предназначены для выявления степени осадки фундамента и объемных участков деформации здания.
  • Радиометрический метод. Позволяет определить плотность материала стен, в том числе бетона и камня.
  • Ультразвуковое исследование для определения скрытых дефектов стен, а также прочности материала, определения степени раскрытия трещин, их глубины и ширины.
  • Акустические метод, необходимый для изучения уровня звукопроводности перекрытий и стен.
  • Пневматическое исследование здания, позволяющее проанализировать воздухопроницаемость конструкций.
  • Нейтронный метод – один из самых точных при изучении плотности кирпичной кладки, бетона, камня.
  • Электромагнитный метод используется для оценки состояния структуры стен, их толщины и выявления скрытых дефектов.
  • Пластическая деформация – предназначена для определения деформаций и прочности материала стен.
  • Электрооптическая технология исследования – позволяет определить параметры вибрации здания и степень ее влияния на общее состояние конструкции.
  • Метод сдавливания или отрыва со скалыванием – применяют для оценки качества материала стен и его прочности.

Какие параметры определяют при обследовании стен?

Во время обследования стен зданий в обязательном порядке проводят изучение следующих параметров и характеристик:

  • габариты стен;
  • состояние гидроизолирующих элементов;
  • степень влажности стен;
  • звукоизолирующие свойства;
  • теплозащитные характеристики;
  • качество кладки и материалов стен, в том числе прочность раствора, бетона, кирпича;
  • межосевое расстояние;
  • возможное смещение осей.

Кроме того, анализируют относительные горизонтальные отклонения по соотношению к высоте здания. Так, для железобетонных и кирпичных стен она не должная быть выше соотношения 1/500. Для стен из этих же материалов, облицованных натуральным камнем, нормальным считается горизонтальное отклонение 1/700, а для стеклянных витражей не более 1/1000.

Какие дефекты и повреждения стен можно обнаружить при обследовании?

Профессиональное техническое обследование состояния стен позволяет выявить следующие дефекты:

  • незначительное и масштабное расслоение кладочных швов;
  • наклонные, горизонтальные и вертикальные трещины в основных стенах, перемычках и простенках;
  • разрушение отдельных участков;
  • эрозийное выветривание участков с наружной стороны здания;
  • отклонение в показателях вертикальности;
  • отслоение штукатурки и облицовочного материала;
  • единичные выпадения кирпичей;
  • промерзание и увлажнение отдельных участков и всей конструкции;
  • деформацию стенок и разрыв взаимосвязей между ними;
  • отклонение габаритов стен от проектных размеров;
  • коррозию кирпича, закладных элементов, раствора;
  • отсутствие или несоответствие параметрам сортировочных подушек опорных конструкций;
  • несоответствие качества материалов, используемых при строительстве.

Обследование кирпичных стен с учетом особенности кирпичной кладки

Обследование кирпичных стен здания проводят с предварительным обнажением участка кладки и удалением штукатурки. Число вскрытий штукатурного слоя с целью освидетельствования характеристик кирпичной кладки и анализа состояния стены, определяется согласно таблице:

Количество секций зданий Количество этажей
до 2 3–4 5–6 более 7
до 2 6 8 10 от 12
3 8 10 12 от 14
4 10 12 14 от 16
5 12 14 16 от 18
6 14 16 18 от 20

Обследование кирпичной кладки стен, организованное по требованиям ГОСТ 31937-2011, в основном, направлено на изучение глубоких и широких трещин, которые выступают в качестве основных причин деформации здания в целом. К таким дефектам относятся:

  • трещины несущих элементов, возникающие вследствие перегрузок;
  • трещины, образованные из-за неравномерной осадки фундамента;
  • дефекты, образующиеся под действием перепадов температур.

Помимо геометрических характеристики трещин, проводится оценка технического состояния зданий, и фиксация результатов изменения параметров дефектов во времени. С этой целью в трещины в начале ее появления и в наиболее широком или глубоком месте раскрытия, монтируются несколько маяков. При регулярном осмотре маяков и фиксации результатов учитываются свойства изменения параметров дефекта в зависимости от температурных колебаний.

Определение прочности кирпичной кладки на сжатие:

Марка

кирпича

Расчетное сопротивление Р, МПа, сжатию кладки на

растворах марки

Особенности обследования стен из монолитного бетона и бетонных панелей

Для получения актуальных данных и исключения искажения результатов, во время проведения обследования стен из монолитного бетона и зданий из бетонных панелей, обязательно учитывают разность прочности бетона:

  • в нижней и верхней части сечения;
  • в глубине сечения конструкций и на поверхности.

Данный подход обусловлен особенностями бетонирования. Из-за механического уплотнения поверхностный слой бетона отличается повышенным содержанием цемента, заполнителя и других добавок. Кроме того, характеристики поверхностного слоя конструкции может отличаться от глубоких слоев, в результате нарушения технологии изготовления, приводящего к снижению прочности материала.

Для определения степени прочности бетона, как правило, используют метод отрыва со скалыванием, как на поверхности, так и на глубине бетона. Чтобы обеспечить информативность исследования, отрыв со сколом проводят на одном и том же участке, после удаления и расчистки бетона до необходимой глубины первого отрыва.

На прочность бетонных стен на их разной глубине могут влиять и такие параметры, как влажность, химическое воздействие температура. Поэтому, для получения достоверной картины используют комбинацию прямых способов контроля прочности (отрыв дисков, анкера, скол ребра и др.) и косвенных методов анализа (ультразвуковой метод, ударный импульс, упругий отскок). Последние считаются более производительными при работе с бетонными стенами, но требуют точной градуировки.

Во время проведения обследования обязательным действием является изучение и оценка параметров армирования стен из бетона, таких как:

  • частота;
  • направление;
  • глубина пролегания арматуры.

При этом следует учитывать что, прочность бетона непосредственно над арматурой и узлами искажается. Кроме того, при незначительном расстоянии между металлическими прутьями многие методы не подходят для обследования и, даже в случае их использования, дают искаженные результаты.

Так же, как и при работе со стенами из кирпича, при диагностике состояния бетонных стен, обязательно фиксируют параметры всех обнаруженных дефектов, рассчитывают общую прочность конструкции, и ее отдельных элементов, на которых проводились контрольные испытания.

Заключение

Результатом обследования стен здания является отчет, включающий в себя пакет документов:

  • акт обследования стен с детальным описанием исследуемого объекта и отображением его назначения, материалов стен, площади и др.;
  • результаты всех проведенных исследований;
  • экспертиза фундамента;
  • фотоотчет, где фиксируется и описывается каждый дефект;
  • инженерно-технические расчеты по несущим и ограждающим конструкциям;
  • графические материалы, включающие чертежи здания, схемы планировок, планы расположения помещений и т. п.;
  • выводы о возможности эксплуатации объекта с указанием различных видов нагрузок;
  • перечень рекомендаций по устранению дефектов, ремонту, реконструкции для восстановления эксплуатационных возможностей здания.

Техническое заключение позволяет заказчику не только выявить причины деформации здания, но и найти оптимальные меры для безопасной эксплуатации объекта по его назначению. Детальный анализ здания дает возможность точно определить виды и перечень работ, необходимых для предотвращения аварийных ситуаций.

Решение проблемы защиты жилых зданий, строящихся в Москве, в случаях возникновения чрезвычайных ситуаций (ЧС) 1 , в соответствии с директивными и нормативными документами должно учитывать природные и техногенные чрезвычайные ситуации, определенные соответствующими ГОСТ. Однако учет природных особенностей Московского региона и уроков многочисленных аварий зданий и сооружений в России и за рубежом 2 показывает, что перечень ЧС, рассматриваемых при таком анализе, должен быть существенно уточнен и расширен по сравнению с гостируемым. В него необходимо включить следующие чрезвычайные ситуации:

1 Здесь и в дальнейшем курсивом выделяются термины и сокращения, определенные в госстандартах.

2 Библиография строительных аварий чрезвычайно обширна, весьма подробная библиография аварий жилых зданий во второй половине 20 века - в [20].

1. Природные ЧС:

A) - сейсмические воздействия;

Б) - опасные метеорологические явления, приводящие к повышенным ветровым нагрузкам на здания;

B) - образование карстовых воронок и провалов в основаниях зданий;

2. Антропогенные (в т.ч. техногенные) ЧС 3 :

3 Термин «антропогенные ЧС», применяемый в литературе, представляется более общим, чем гостируемый «техногенные ЧС» - в частности, это иллюстрирует приводимый здесь перечень ЧС.

А) - взрывы снаружи или внутри здания (в литературе упоминаются следующие источники: бытовой газ, взрывоопасные газовые смеси и жидкости, бомбы и другие взрывные устройства, используемые террористами);

Б) - пожары 4 ;

4 Пожары могут быть отнесены и к природным ЧС, но чаще они возникают по причинам, связанным с деятельностью людей.

В) - транспортные аварии (ДТП, авиационные катастрофы);

Г) - аварии зданий и сооружений или значительные повреждения их несущих конструкций, вызванные одной из следующих причин:

а) ошибки в проектах, в том числе вызванные несовершенством СНиП,

б) недоброкачественное производство работ (на заводе или на монтаже);

в) дефекты материалов;

г) недостатки эксплуатации зданий, в том числе их инженерного оборудования;

д) небрежность, некомпетентность, а иногда и случаи вандализма жильцов, технического персонала или посторонних посетителей здания (в частности, самовольная перепланировка квартир с ослаблением несущих конструкций).

Указанные в приведенном перечне источники ЧС, по аналогии с классификацией взрывов на производстве, здесь разделены на проектные и запроектные. Защита зданий при ЧС, вызванных проектными источниками, определяется соответствующими СНиП, защита зданий при ЧС, вызванных запроектными источниками, требует специального анализа, конечная цель которого - разработка соответствующих норм и перевод рассматриваемых ЧС из разряда запроектных в категорию проектных Основная цель настоящих рекомендаций - обеспечение безопасности московских жилых зданий при запроектных ЧС.

Как показывает анализ чрезвычайных ситуаций, перечисленных выше, [19] наиболее вероятные для московских условий запроектные ЧС сводятся к локальным аварийным воздействиям на отдельные конструкции одного здания: взрывы, пожары, карстовые провалы, ДТП, дефекты конструкций и материалов, аварии инженерных систем здания, некомпетентная реконструкция и т.п. Это случайные, в общем случае непредсказуемые, нештатные ситуации, указанные в п. п. 1 В, 2 вышеприведенного перечня ЧС.

Как правило, воздействия рассматриваемого типа приводят к местным повреждениям несущих конструкций зданий. При этом в одних случаях ЧС этими первоначальными повреждениями и исчерпываются, а в других - несущие конструкции, сохранившиеся в первый момент аварии, не выдерживают дополнительной нагрузки, ранее воспринимавшейся поврежденными элементами, и тоже разрушаются. Аварии последнего типа получили в литературе наименование "прогрессирующее обрушение".

Термин "прогрессирующее обрушение" и формулировка проблемы защиты от него панельных зданий появились в 1968 г. в докладе комиссии, расследовавшей причины известной аварии 22-этажного панельного жилого дома «Роунан Пойнт» в Лондоне [1]. После публикации доклада практически во всех развитых странах были начаты исследования этой проблемы, и к концу 70-х годов анализ возможных средств защиты от прогрессирующего обрушения зданий различных конструктивных систем с учетом экономических критериев был в основном завершен. Основные выводы, полученные разными исследователями, и последовавшие за ними изменения норм проектирования особенно для панельных зданий большинства развитых стран оказались схожи. Для конструкций различных систем зданий основные рекомендации сводились к следующему.

1. Не отказываясь в принципе от профилактических мер, направленных на предупреждение локальных ЧС или возникающих при них аварийных воздействий, самое серьезное внимание следует уделить предупреждению прогрессирующего обрушения. Это вызвано, во-первых, тем, что никакими экономически оправданными мерами невозможно полностью исключить возможность локальных разрушений несущих конструкций зданий, во-вторых, тем, что прогрессирующее обрушение ведет к наиболее тяжелым последствиям, в-третьих, тем, что при сравнительно небольших местных разрушениях несущих конструкций зданий обеспечение их устойчивости против прогрессирующего обрушения позволяет предотвратить эти последствия и защита может быть достигнута простыми и не дорогостоящими техническими средствами.

2. Основной принцип предотвращения прогрессирующего обрушения - повышение неразрезности конструктивной системы здания посредством совершенствования стыков и связей между конструктивными элементами.

3. Эффективность конструктивной защиты зависит от развития в элементах конструкций и их связях пластических деформаций; для пластичности связей, в частности, требуется, чтобы прочность анкеровки связей в сборных элементах была «соответствующей», т.е. больше несущей способности самой связи, или больше усилий, вызывающих текучесть связи.

4. Отмечается качественное сходство рекомендуемых мер защиты от прогрессирующего обрушения с апробированными конструктивными антисейсмическими мероприятиями. В литературе приводятся многочисленные примеры сейсмостойких зданий, локальные разрушения которых не привели к прогрессирующему обрушению благодаря соответствующей сейсмозащите.

Настоящие рекомендации, основанные на указанных принципах, рассматривают вопросы защиты при локальных ЧС для жилых зданий с несущими кирпичными стенами. Вопросы, рассмотренные в настоящих Рекомендациях, в той или иной мере ранее рассматривались, необходимость разработки данных рекомендаций появилась после ужесточения противопожарных требований [12]. Пожары являются частным случаем ЧС. Мероприятия по выполнению требований противопожарных норм защищают отдельные элементы здания только от воздействия пожара, а в случае других ЧС могут оказаться бесполезными. Поэтому в московских нормах [13] было принято положение о необходимости защиты здания в целом от прогрессирующего обрушения (п. 3.6) при ЧС любого типа, а требования по огнестойкости отдельных конструктивных элементов (п. 3.24) трактуются с учетом защищенности здания от прогрессирующего обрушения.

Рекомендации составлены на основе анализа обширной научной и нормативной зарубежной литературы и по результатам научных исследований проблемы защиты зданий от прогрессирующего обрушения, выполненных в МНИИТЭП, и разработаны в развитие Московских городских норм [13].

1.1. Жилые здания первой и второй категории ответственности с кирпичными 5 несущими стенами должны быть защищены от прогрессирующего (цепного) обрушения в случае локального разрушения их несущих конструкций при аварийных воздействиях, не предусмотренных условиями нормальной эксплуатации зданий (взрывы, пожары, ударные воздействия транспортных средств и т.п.). Это требование означает, что в случае аварийных воздействий допускаются локальные разрушения несущих конструкций (полное или частичное разрушение отдельных стен в пределах одного этажа и двух смежных осей здания), но эти первичные разрушения не должны приводить к обрушению или к разрушению конструкций, на которые передается нагрузка, ранее воспринимавшаяся элементами, поврежденными аварийным воздействием.

5 Здесь и далее имеется в виду не только кирпичные стены, но и из других каменных материалов в соответствии с [7, 22].

Конструктивная система здания должна обеспечивать его прочность и устойчивость в случае локального разрушения несущих конструкций как минимум на время, необходимое для эвакуации людей. Перемещение конструкций и раскрытие в них трещин в рассматриваемой чрезвычайной ситуации не ограничивается.

1.2. При проектировании защиты зданий с кирпичными несущими стенами от прогрессирующего обрушения следует выделять два типа неповрежденных конструктивных элементов. В элементах первого типа воздействия локальных разрушений не вызывают качественного изменения напряженного состояния, а приводят лишь к увеличению напряжений и усилий (неповрежденные участки стен и плиты перекрытий, не расположенные над локальным разрушением). В элементах второго типа (к ним относятся конструкции, потерявшие первоначальные опоры - элементы стен и перекрытий, расположенные над локальным разрушением) в рассматриваемом состоянии здания качественно меняется напряженное состояние.

В связи с тем, что элементы первого типа при нормальных эксплуатационных воздействиях подвергаются нагрузкам в два-три раза ниже разрушающих, основной задачей проектирования является обеспечение прочности и устойчивости элементов стен и перекрытий, потерявших опору в результате локального разрушения стен. Обеспечение устойчивости этих конструкций, которая зависит как от прочности самих зависших элементов, так и от прочности их связей между собой и с неповрежденными стенами, - основная задача защиты зданий от прогрессирующего обрушения

1.3. Устойчивость здания против прогрессирующего обрушения следует обеспечивать наиболее экономичными средствами:

- конструктивными мерами, способствующими развитию в элементах и их соединениях пластических деформаций при предельных нагрузках;

- рациональным решением системы конструктивных связей, отдельных узлов и элементов соединений и стыков.

1.4. Реконструкция здания (в частности, перепланировка квартир с устройством новых проемов), не должна снижать устойчивости здания против прогрессирующего обрушения.

2.1. Устойчивость здания против прогрессирующего обрушения проверяется расчетом на особое сочетание нагрузок и воздействий, включающее постоянные и временные длительные нагрузки, а также воздействие гипотетических локальных разрушений несущих конструкций.

2.2. Величины нагрузок должны определяться по [11]. При этом коэффициенты сочетаний нагрузок и коэффициенты надежности по нагрузке следует принимать равными единице.

Рекомендуется принимать следующие размеры локальных повреждений:


Рис. 1. Фрагмент кирпичного жилого дома

1 - армированные пояса, 2 - варианты расположения гипотетических локальных разрушений.

· карстовая воронка под фундаментом здания диаметром 6 м (для карстоопасных районов);

· разрушение (удаление) двух пересекающихся стен одного (любого) этажа на участках от места их сопряжения (в частности, от угла здания) до ближайшего проема в каждой стене или до следующего пересечения со стеной перпендикулярного направления, но на длине не более 3 м;

· исчезновение любого из простенков наружной стены;

· исчезновение любого из участков стены одного этажа шириной 3 м;

· повреждение сборного или монолитного перекрытия общей площадью до 40 м 2 ;

Для оценки устойчивости здания против прогрессирующего обрушения разрешается рассматривать лишь наиболее опасные расчетные схемы разрушения:

локальные разрушения, включающие разрушение наружных стен, ослабленных дверными проемами выходов на балконы и лоджии;

локальные разрушения, включающие разрушения простенков внутренних стен между двумя дверными проемами при балочной разрезке большепролетных сборных перекрытий.

2.4. При расчете зданий на устойчивость против прогрессирующего обрушения расчетные сопротивления кладки, арматуры и прокатной стали, а также нормативные сопротивления бетона принимаются в соответствии с [ 7 - 9 ]. Расчетные сопротивления бетонных и железобетонных конструкций, определяемые делением нормативных сопротивлений на коэффициенты надежности, повышают за счет использования коэффициентов надежности по материалу, указанных в табл. 1 . Кроме того, расчетные сопротивления умножают на коэффициенты условий работы, учитывающие малую вероятность аварийных воздействий и интенсивный рост прочности бетона в первый период после возведения здания, а также возможность использования арматуры и металлических элементов за пределом текучести материала. Коэффициенты условий работы для кирпичной кладки и бетона принимают по таблице 2 , для арматуры всех классов вводится единый коэффициент g s = 1,1. Коэффициент условий работы g s для пластичных сталей принимается равным 1,1.

При эксплуатации зданий и сооружений, а также при их обследовании широко применяются для оценки технического состояния конструкций визуальные обследования. В связи с этим возникает необходимость в установлении надежности обследуемых конструкций по внешним признакам повреждений.

Как показали наблюдения, в процессе эксплуатации конструкций происходит циклическое изменение их надежности, что связывается с изменчивостью величин нагрузок и изменением несущей способности вследствие различных повреждений.

При достижении конструкцией определенного уровня надежности в ней будут наблюдаться необратимые повреждения: трещины, потеря устойчивости сжатых элементов, пластические деформации, коррозионные повреждения и т.п. Повреждения критического характера в конструкциях могут привести к обрушению конструкции и аварии здания или сооружения.

Учет влияния повреждений на надежность конструкции зданий и сооружений обобщен в настоящих рекомендациях.

Для удобства оценки надежности составлены подробные таблицы для различных видов конструкций. Своевременная оценка технического состояния конструкций и сооружений позволит вовремя провести их ремонт и усиление и тем самым обеспечить их надежность при эксплуатации.

Не менее важным вопросом является экспертиза здания или сооружения на предрасположенность к аварии. Выявление таких объектов по предлагаемой в рекомендациях методике позволит эксперту или автору проекта критически подойти к оценке их надежности и принять в случае необходимости дополнительные мероприятия по контролю качества, что в итоге будет способствовать повышению надежности.

1.1 . Настоящие Рекомендации предназначены для приближенной оценки надежности эксплуатируемых отдельных строительных конструкций и надежности зданий и инженерных сооружений в целом. По результатам этих оценок устанавливается пригодность конструкций зданий и инженерных сооружений для эксплуатации, сроки ремонтов, а также необходимость применения более точных методов установления надежности конструкций.

1.2 . Оценка надежности строительных конструкций при эксплуатации производится на основе имеющихся в них повреждений, устанавливаемых на основе визуальных обследований.

1.3 . Оценка вероятностей аварий зданий и сооружений и их надежность осуществляется по методике экспертных оценок.

1.4 . Под надежностью строительных конструкций понимается сохранение во времени, установленного нормами их качества: необходимой несущей способности, долговечности, деформативности.

2.1 . Повреждения в конструкции разделяются в зависимости от причин их возникновения на две группы: от силовых воздействий и от воздействия внешней среды. Последняя группа повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность. Основные виды повреждений стальных, железобетонных, каменных и деревянных конструкций приведены на рис. 1 . 31 приложения 6.1 .

2.2 . В зависимости от имеющейся поврежденности и надежности, техническое состояние конструкций разделяется на 5 категорий: нормальное, удовлетворительное, не совсем удовлетворительное, неудовлетворительное, аварийное.

2.3 . Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) g 0 = g m · g c · g f · g n конструкций в процессе эксплуатации, где g m - коэффициент надежности по материалу, g с - коэффициент условий работы, g f - коэффициент надежности по нагрузке, g n - коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации у = g / g 0 и поврежденность конструкции e = 1 - у, где g - фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения у и e , а также приближенная стоимость С ремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в табл. 1 .

2.4 . Оценка технического состояния стальных, железобетонных каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 2 - 5 . При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

2.5 . Общая оценка поврежденности здания и сооружения производится по формуле

где e 1 , e 2 , . e i - максимальная величина повреждений отдельных видов конструкций, a 1 , a 2 , . a i - коэффициенты значимости отдельных видов конструкций.

При оценке величин повреждений учитывают их максимальную величину, так как авария здания или сооружения обычно происходит из-за наличия критического дефекта в отдельно взятой конструкции.

Коэффициенты значимости конструкций устанавливаются на основании экспертных оценок, учитывающих социально-экономические последствия разрушения отдельных видов конструкций, характера разрушения (разрушение с предварительным оповещением посредством развития пластических деформаций или мгновенное хрупкое разрушение). При отсутствии данных коэффициенты значимости a i принимаются: для плит и панелей перекрытия и покрытия a = 2, для балок a = 4, для ферм a = 7, для колонн a = 8, для несущих стен и фундаментов a = 3, для прочих строительных конструкций a = 2.

КАТЕГОРИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ

Описание технического состояния

Относительная надежность y = g / g 0

Стены здания - кирпичные. Наружные продольные стены, толщиной 380мм, перевязаны с пилястрами. Поперечная стена по оси А/В-4, толщиной 380мм.

Наружное оформление (наличие штукатурки, облицовка плитками, кладка в пустошовку, кладка с расшивкой швов и пр.)

  • Кирпичная кладка с расшивкой швов.
  • Цоколь оштукатурен.

Материалы стен, столбцов, качество бетона, металла и т.п. (горизонтальность рядов кладки, толщина швов, полнота заполнения швов раствором. Тщательность перевязки рядов кладки, однородность бетона и отсутствие его сортировки, связь инертного заполнителя с цементным камнем и т.п.)

  • Кирпич керамический (цоколь, карниз)
  • Кирпич силикатный (стены)
  • Раствор ц/п.

Перемычки

Общее состояние стен по их наружному виду

В соответствии с СП 13-102-2003 техническое состояние пилястр, соответствует ограниченно - работоспособному состоянию.

Показатели прочности кирпичной кладки.

  • Прочность цементно-песчаного раствора – 5,3 МПа, что соответствует марке М50.
  • Прочность силикатного кирпича –7.2 МПа, что соответствует марке М50.
  • Расчётное сопротивление кладки из глиняного кирпича сжатию по СНиП II-22-81* равно 10кгс/см2.

Классификация дефектов кирпичной кладки, выявленных при обследовании

1. В стенах здания зафиксированы деформационные трещины. По характеру распространения трещин установлено:

  • Трещины расположены в месте заделки железобетонных стропильных балок в кладку и металлических перемычек (рядовых и длинной более 2-х метров), имеют дугообразную форму в месте заделки перемычек и распространены в вертикальном и диагональном направлении над оконными проёмами. Длина трещин - более 60см. Причина появления трещин - температурные деформации. (рис 11 а)
  • Отдельные трещины в кладке, длиной 15-18см, возникающие вследствие перегрузки конструкций постоянными, временными и особыми (случайными) нагрузками (рис. 9 а)
  • Вертикальные трещины, длиной ½ высоты стены, с наибольшим раскрытием в верхней части, в месте пересечения продольных и поперечных несущих стен. Причина появления трещин - разная величина вертикальных перемещений стен из однородных материалов, в местах сопряжения разнонагруженных стен. Сквозные вертикальные осадочные трещины в продольных стенах с расположением по одной оси. Длина трещин по цоколю и, далее, на всю высоту здания. Трещины, в пересечении несущих стен и в продольных стенах, нарушают пространственную жёсткость, и разделяют здания на несколько отдельных объёмов.

Рис. 9. Степень повреждения вертикальными трещинами каменных и армокаменных конструкций

а - отдельные трещины, длиной 15-18 см; б - трещины через 25-30 см, длиной 30-35 см; в - трещины через 20-25 см, длиной 60-65 см; г - трещины через 15-20 см, длиной, более 65 см

Рис. 11. Напряженное состояние ( s у ) и повреждения кладки опор перемычек и балок при изгибе ( g ) и внецентренном сжатии (е)

а - при заделке в кладку; б - то же, при опирании

Рис. 12. Образование трещин сдвига (среза) d т в стенах

а - в местах сопряжения разнонагруженных (разнодеформируемых) стен; б - в местах нависания кладки (а); t - касательные; - нормальные напряжения

2. Вследствие наличия деформационных трещин от горизонтальных и вертикальных температурных и осадочных деформаций, несущая способность стен и пространственная жёсткость коробки здания снижена. Необходимо предусмотреть усиление стен стальными обоймами, а также проведением противоаварийных мероприятий, путём стягивания коробки здания в уровне перекрытий стальными тяжами (по обе стороны от стропильных балок), с заделкой в стены (см. Приложение №1)

3. В соответствии с СП 13-102-2003 техническое состояние стен соответствует - ограниченно-работоспособному состоянию.

Физический износ стен в соответствии с ВСН 53-86(р) соответствует 50%.

Физический износ перегородок в соответствии с ВСН 53-86(р) соответствует 40%.

Выписка из ВСН 53-86(р) «Правила оценки физического износа зданий»

Стены кирпичные

Таблица 10

Признаки износа

Количественная оценка

Физический износ, %

Примерный состав работ

Отдельные трещины и выбоины

Ширина трещины до 1 мм

0-10

Заделка трещин и выбоин

Глубокие трещины и отпадение штукатурки местами, выветривание швов

Ширина трещин до 2 мм, глубина до 1/3 толщины стены, разрушение швов на глубину до 1 см на площади до 10%

11-20

Ремонт штукатурки или расшивка швов, очистка фасадов

Отслоение и отпадение штукатурки стен, карнизов и перемычек, выветривание швов, ослабление кирпичной кладки, выпадение отдельных кирпичей, трещины в карнизах и перемычках, увлажнение поверхности стен

Глубина разрушения швов до 2 см на площади до 30%. Ширина трещины более 2 мм

21-30

Ремонт штукатурки и кирпичной кладки, подмазка швов, очистка фасада, ремонт карниза и перемычек

Массовое отпадение штукатурки, выветривание швов, ослабление кирпичной кладки стен, карниза, перемычек с выпадением отдельных кирпичей, высолы и следы увлажнения

Глубина разрушения швов до 4 см на площади до 50%

31-40

Ремонт поврежденных участков стен, карнизов, перемычек

Сквозные трещины в перемычках и под оконными проемами, выпадение кирпичей, незначительное отклонение от вертикали и выпучивание стен

Отклонение стены от вертикали в пределах помещения более 1/200 длины деформируемого участка

41-50

Крепление стен поясами, рандбалками, тяжами и т.п., усиление простенков

Массовое прогрессирующие сквозные трещины, ослабление и частичное разрушение кладки, заметное искривление стен

Выпучивание, с прогибом более 1/200 длины деформируемого участка

51-60

Перекладка до 50% объема стен, усиление и крепление остальных участков стен

Разрушение кладки местами

-

61-70

Полная перекладка стен

Перегородки кирпичные

Таблица 21

Признаки износа

Количественная оценка

Физический износ, %

Примерный состав работ

Трещины в местах сопряжений с потолками, редкие сколы

Трещины, шириной до 2 мм. Повреждение на площади до 10%

0-40

Заделка трещин и сколов

Трещины на поверхности, глубокие трещины в местах сопряжений со смежными конструкциями

Ширина трещин на поверхности до 2 мм, в сопряжениях ширина трещин - до 10 мм

41-60

Расчистка поверхности и расшивка трещин

Выпучивание и заметное отклонение от вертикали, сквозные трещины, выпадение кирпичей

Выпучивание более 1/100 длины деформированного участка. Отклонение от вертикали до 1/100 высоты помещения

61-80

Полная замена перегородок

Обследование колонн здания

Конструкция колонн

Кирпичные пилястры. В верхней части пилястр выполнена опорная часть из ж/б подушек. Стропильные балки заделаны в кирпичную кладку пилястр. Пилястры имеют размеры: 180мм выступ от поверхности стены на 524мм – ширина пилястры.

Наружное оформление (наличие штукатурки, облицовка плитками, кладка в пустошовку, кладка с расшивкой швов и пр.)

Штукатурка. По штукатурке в/э и масляной краской в нижней части.

Материалы колонн. (горизонтальность рядов кладки, толщина швов, полнота заполнения швов раствором. Тщательность перевязки рядов кладки, однородность бетона и отсутствие его сортировки, связь инертного заполнителя с цементным камнем и т.п.)

  • Кирпич силикатный.
  • Раствор ц/п.
  • Горизонтальные и диагональные краевые трещины в пилястрах в верхней части пилястр.
  • Трещины в месте пересечения кладки пилястры и кладки стен.

Общее состояние колонн по их наружному виду

В соответствии с СП 13-102-2003 техническое состояние пилястр, соответствует – ограниченно - работоспособному состоянию.

Показатели прочности кирпичной кладки пилястр

  • Прочность цементно-песчаного раствора – 5,3 МПа, что соответствует марке М50.
  • Прочность силикатного кирпича – 7.2 МПа, что соответствует марке М50.
  • Расчётное сопротивление кладки из силикатного кирпича сжатию по СНиП II-22-81* равно 10кгс/см2.

Классификация дефектов, выявленных при обследовании

1. При проведении обследовании зафиксированы дефекты, снижающие несущую способность пилястр:

А) Вертикальные и диагональные трещины в верхней части пилястры на стыке с кладкой стен здания, длинной 30-50см.

Б) Краевые дугообразные трещины под опорной подушкой ж/б балок в верхней части колонн.

Дефекты являются следствием температурных деформаций балок и внецентренного сжатия кладки.

В соответствии с ПОСОБИем "ПО ОБСЛЕДОВАНИЮ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ, РЕКОМЕНДАЦИИ ПО ОБСЛЕДОВАНИЮ И ОЦЕНКЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КРУПНОПАНЕЛЬНЫХ И КАМЕННЫХ ЗДАНИЙ" несущая способности кладки пилястр снижена на 25%.


Извлечение п.4.4 п.4.10 и таблица II-2 ПОСОБИЯ ПО ОБСЛЕДОВАНИЮ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ, РЕКОМЕНДАЦИИ ПО ОБСЛЕДОВАНИЮ И ОЦЕНКЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КРУПНОПАНЕЛЬНЫХ И КАМЕННЫХ ЗДАНИЙ:

- для стен, столбов, простенков при наличии вертикальных трещин, возникающих вследствии перегрузки конструкций постоянными, временными и особыми (случайными) нагрузками (рис. 9), исключая трещины, вызванные действием горизонтальных сил (температурой, усадкой, осадкой фундаментов и т.п.), принимается по табл. 5;

- для кладки опор ферм, балок, перемычек, плит, при наличии местных повреждений (трещин, сколов, раздробления, рис. 10), возникающих при действии вертикальных и горизонтальных сил, принимается по табл. 6;

- для стен, столбов, простенков из красного или силикатного кирпича при огневом воздействии, при пожаре принимается по табл. 7;

- для увлажненной и насыщенной водой кладки из красного и силикатного кирпича и камней - Ктс = 0,85, из природных камней правильной формы из известняка и песчаника - Ктс = 0,8.

Рис. 10. Характерные случаи повреждения опорных участков пилястр каменных стен, при опирании на них ферм и балок

1 - пилястра; 2 - краевое раздробление и сколы кладки под опорой; 3 - вертикальные трещины

- для кладки опор ферм, балок, перемычек, плит при наличии местных повреждений (трещин, сколов, раздробления, рис. 10), возникающих при действии вертикальных и горизонтальных сил, принимается по табл. 6;

4.4. При определении несущей способности стен и простенков, имеющих вертикальные трещины, возникшие в результате действия горизонтальных растягивающих сил (температурных, осадочных, усадке и т.п.), коэффициент Ктс в формуле ( 4), принимается равным единице. При этом следует учитывать ослабление трещинами расчетного сечения простенков и увеличения продольного изгиба отдельных элементов, выделенных вертикальными трещинами.

Таблица 6

Характер повреждения кладки опор

Ктс для кладки опор

не армированной

армированной

Местное (краевое) повреждение кладки на глубину до 2 см (трещины, сколы, раздробление) или образование вертикальных трещин по концам балок, ферм и перемычек или их опорных подушек, длиной до 15-18 см

0,75

0,9

То же, при длине трещин до 30-35 см

0,5

0,75

Краевое повреждение кладки на глубину, более 2 см, при образовании по концам балок, ферм и перемычек вертикальных и косых трещин длиной, более 35 см

0

0,5

4.10. Состояние, степень повреждения и необходимость конструктивного усиления каменных, крупноблочных и крупнопанельных конструкций определяются в зависимости от величины снижения (в процентах) несущей способности, при наличии дефектов, трещин и повреждений. Основные градации состояний, степень повреждений конструкций и рекомендации по их усилению приводятся в табл. 8.

В сооружениях и зданиях стены выполняют разные функции, основной из которых является защита помещений от внешних атмосферных воздействий. Наряду с тем, что кирпич – это прочный и надежный строительный материал, в процессе эксплуатации кирпичные стены утрачивают свои первостепенные прочностные характеристики и нуждаются в усилении и ремонте.

Причины возникновения дефектов на кирпичной кладке

Если в процессе обследований технического состояния зданий и сооружений на стеновых конструкциях выявлены дефекты, то первое что необходимо сделать – это определить факторы их возникновения.

Выделяют разные причины появления дефектов на стеновых кирпичных конструкциях. Наиболее распространенными считаются:

  • несоблюдение технологии приготовлении бетонного раствора, использование некачественных компонентов или же нарушение их пропорций;
  • выполнение дополнительных пристроек надстроек или проемов в здании, наличие которых не предусмотрено проектом. Это повышает нагрузку на кладку;
  • цикличные процессы заморозки и оттаивания земли или негативное воздействие грунтовых вод;
  • частые резкие перепады влажности и температурного режима приводят к разрушению связующего раствора;
  • неправильное выполнение проектных работ: неточное определение нагрузок, которые должны выдерживать несущие стены, недостаточное исследование грунта и другие неточности;
  • отсутствие перевязки швов;
  • естественное старение каменной кладки, повреждение кирпича эрозией и влияние других неблагоприятных факторов.

Вне зависимости по какой из причин образовались дефекты кирпича, при обнаружении их необходимо устранить. В противном случае разрушения будут только увеличиться и в результате здание станет аварийным.

Виды дефектов

В результате вышеперечисленных факторов образуются следующие характерные повреждения и дефекты каменной кладки:

  • провисание или выпадение кирпичей из оконных и дверных перемычек;
  • промерзание;
  • прогиб кирпичной кладки;
  • намокание стен, что в дальнейшем приводит к отсыриванию;
  • расслоение кирпичной кладки;
  • выветривание стенового материала вследствие его разрушения;
  • образование трещин в стенах в местах состыковки с эркерами, балконными плитами и другими конструктивными элементами.

Чаще обычного среди разных типов повреждений кирпичной кладки возникают трещины, которые по степени сложности разделяются на:

  • открытые, увидеть которые можно при визуальном осмотре поверхности стен;
  • закрытые, расположенные внутри кирпича. Обнаружить их при осмотре невозможно, только при обследовании специальным оборудованием;
  • стабильные или растущие;
  • сквозные.

Самыми опасными являются сквозные трещины, поэтому при их возникновении следует как можно быстрее устранить такие дефекты.

Методы устранения дефектов

Чтобы качественно и правильно выполнить устранение дефектов кирпичной кладки, необходимо не только установить причину, но также безошибочно подобрать способ восстановления и укрепления стены.

Цементирование трещин

Таким способом наиболее часто устраняют дефекты кирпичной кладки наружных стен. Для этого используются специальные ремонтные смеси или приготавливается цементно-песчаный раствор.

Но внимание следует обратить на то, что такой вариант считается косметическим. Заделка препятствует проникновению в пустоты грязи и пыли, но сами трещины не герметизирует. Чтобы предотвратить дальнейшее растрескивание кирпичной поверхности, то места заделки необходимо обработать гидроизоляционными составами.

Частичная замена элементов

Если дефектом является выпадение отдельных кирпичей, то разрушенный участок нужно разобрать до достижения прочного основания и на это место установить новые кирпичи. При этом лучше использовать раствор плотной консистенции.

Чтобы не нарушить находящую выше поврежденного участка кладку закрепить ее нужно временными подпорками, и убрать их можно как минимум через неделю после реставрационных работ.

Инъектирование кирпичной стены

В зависимости от формы и размера повреждения для инъектирования используют эпоксидные и полиуретановые смолы, микроцемент, полимерные гели. Такой метод требует наличия специализированного оборудования и профессиональных навыков.

Стоимость работ весьма высокая, но даже когда обнаружена сильная деформация кирпичной кладки технология является высоко эффективной.

Устранение сильных разрушений

Чтобы предотвратить разрушение стены при обнаружении динамичных трещин, то наиболее рационально полностью перекласть проблемный участок. Возможен и другой, более бюджетный способ – обтяжка здания.

Как избежать дефектов

Если в процессе возведения объекта с точностью соблюдать строительную технологию и руководствоваться требованиями ГОСТов, ТУ, СНиП – дефекты каменной кладки можно предотвратить.

Чтобы получить прочную и долговечную кирпичную кладку в работе с раствором и кирпичом придерживаться нужно нескольких основных правил:

  • используемый для бетонной смеси песок должен быть тщательно очищен и просушен, и только после этого его можно смешивать с другими компонентами;
  • надежной считается кладка, выполненная методом «перевязки». При этом на все кладочные ряды нагрузочное напряжение распределяется равномерно, что в дальнейшем предотвращает дефекты стен внутри помещений и снаружи;
  • если строительство происходит в зимний сезон, то не больше чем на 4 часа работы разрешается готовить раствор;
  • чтобы стены получались идеально ровными, то перед их возведением следует протянуть шнур на расстоянии 2-3 мм от кладки;
  • вытекающий во время работы раствор нужно заглаживать;
  • обязательно нужно контролировать с помощью уровня и правила горизонтальность.

Толщина швов также имеет огромное значение. Проверять ее необходимо через каждые пять уложенных рядов.

Чтобы в процессе эксплуатации сохранялись технические характеристики здания, необходимо периодически проводить обследование конструкций и при выявлении даже незначительных дефектов устранять их, не дожидаясь масштабного разрушения.

Читайте также: